Simplify the Config code (#2770)

* simplify the code

* fix vl

* delete config

* fix

* perfect code

* fix ci

* fix xpu

* fix xpu

* fix server

* resolve conflict

* fix mtp

* resolve conflict

* fix xpu

* fix xpu

* fix vl

* fix log

* fix qwen moe

* fix qwen moe

* fix qwen moe
This commit is contained in:
YuanRisheng
2025-07-14 19:50:05 +08:00
committed by GitHub
parent 2e81792d64
commit 4c7b8bc458
34 changed files with 551 additions and 911 deletions

View File

@@ -27,6 +27,7 @@ from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.distributed.communication_op import \
tensor_model_parallel_all_reduce
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.activation import SiluAndMul
from fastdeploy.model_executor.layers.attention.attention import Attention
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
@@ -40,7 +41,6 @@ from fastdeploy.model_executor.layers.rotary_embedding import \
DeepseekScalingRotaryEmbedding
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
from fastdeploy.platforms import current_platform
from fastdeploy.model_executor.forward_meta import ForwardMeta
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import \
@@ -109,7 +109,7 @@ class DeepSeekV3MoE(nn.Layer):
prefix: str) -> None:
super().__init__()
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
self.tp_size = fd_config.parallel_config.tensor_parallel_size
weight_key_map = {
"gate_weight_key": f"{prefix}.gate.weight",
@@ -124,23 +124,23 @@ class DeepSeekV3MoE(nn.Layer):
self.fused_moe = FusedMoE(
fd_config=fd_config,
reduce_results=False,
moe_intermediate_size=fd_config.model_config.deepseekv3.
moe_intermediate_size=fd_config.model_config.
moe_intermediate_size,
num_experts=fd_config.model_config.deepseekv3.n_routed_experts,
top_k=fd_config.model_config.deepseekv3.num_experts_per_tok,
topk_method=fd_config.model_config.deepseekv3.topk_method,
topk_group=fd_config.model_config.deepseekv3.topk_group,
n_group=fd_config.model_config.deepseekv3.n_group,
routed_scaling_factor=fd_config.model_config.deepseekv3.
num_experts=fd_config.model_config.n_routed_experts,
top_k=fd_config.model_config.num_experts_per_tok,
topk_method=fd_config.model_config.topk_method,
topk_group=fd_config.model_config.topk_group,
n_group=fd_config.model_config.n_group,
routed_scaling_factor=fd_config.model_config.
routed_scaling_factor,
layer_idx=layer_id,
weight_key_map=weight_key_map,
)
self.num_shared_experts = fd_config.model_config.deepseekv3.n_shared_experts
self.num_shared_experts = fd_config.model_config.n_shared_experts
shared_experts_intermediate_size = (
self.num_shared_experts *
fd_config.model_config.deepseekv3.moe_intermediate_size)
fd_config.model_config.moe_intermediate_size)
self.shared_experts = DeepSeekV3MLP(
fd_config=fd_config,
@@ -178,18 +178,18 @@ class DeepseekV3MLAAttention(nn.Layer):
prefix: str = "") -> None:
super().__init__()
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.hidden_size = fd_config.model_config.hidden_size
self.num_attention_heads = fd_config.model_config.num_attention_heads
self.num_attention_heads_tp = self.num_attention_heads // self.tp_size
# MLA
self.qk_nope_head_dim = fd_config.model_config.deepseekv3.qk_nope_head_dim
self.qk_rope_head_dim = fd_config.model_config.deepseekv3.qk_rope_head_dim
self.qk_nope_head_dim = fd_config.model_config.qk_nope_head_dim
self.qk_rope_head_dim = fd_config.model_config.qk_rope_head_dim
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
self.v_head_dim = fd_config.model_config.deepseekv3.v_head_dim
self.q_lora_rank = fd_config.model_config.deepseekv3.q_lora_rank
self.kv_lora_rank = fd_config.model_config.deepseekv3.kv_lora_rank
self.v_head_dim = fd_config.model_config.v_head_dim
self.q_lora_rank = fd_config.model_config.q_lora_rank
self.kv_lora_rank = fd_config.model_config.kv_lora_rank
self.attn_softmax_scale = self.qk_head_dim**-0.5
self.rope_theta = fd_config.model_config.rope_theta
@@ -255,7 +255,7 @@ class DeepseekV3MLAAttention(nn.Layer):
qk_nope_head_dim=self.qk_nope_head_dim,
v_head_dim=self.v_head_dim)
self.rope_scaling = fd_config.model_config.deepseekv3.rope_scaling
self.rope_scaling = fd_config.model_config.rope_scaling
if self.rope_scaling:
mscale_all_dim = self.rope_scaling.get("mscale_all_dim", False)
scaling_factor = self.rope_scaling["factor"]
@@ -449,9 +449,9 @@ class DeepSeekV3DecoderLayer(nn.Layer):
prefix=f"{prefix}.self_attn",
)
if (fd_config.model_config.deepseekv3.n_routed_experts is not None
if (fd_config.model_config.n_routed_experts is not None
and layer_id
>= fd_config.model_config.deepseekv3.first_k_dense_replace):
>= fd_config.model_config.first_k_dense_replace):
self.mlp = DeepSeekV3MoE(
fd_config=fd_config,
layer_id=layer_id,
@@ -525,8 +525,8 @@ class DeepSeekV3Model(nn.Layer):
Initializer for the DeepSeekV3Model class.
"""
super().__init__()
self.num_layers = fd_config.model_config.num_layers
fd_config.model_config.prefix_name = "deepseek_v3"
self.num_layers = fd_config.model_config.num_hidden_layers
fd_config.model_config.pretrained_config.prefix_name = "deepseek_v3"
self.embeddings = VocabParallelEmbedding(
fd_config,
@@ -539,7 +539,7 @@ class DeepSeekV3Model(nn.Layer):
self.decoder_layers = nn.LayerList([
DeepSeekV3DecoderLayer(
fd_config,
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
for i in range(self.num_layers)
])
@@ -755,5 +755,5 @@ class DeepSeekV3PretrainedModel(PretrainedModel):
return final_actions
mappings = get_tensor_parallel_split_mappings(config.num_layers)
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
return mappings