mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-03 00:44:23 +08:00
Simplify the Config code (#2770)
* simplify the code * fix vl * delete config * fix * perfect code * fix ci * fix xpu * fix xpu * fix server * resolve conflict * fix mtp * resolve conflict * fix xpu * fix xpu * fix vl * fix log * fix qwen moe * fix qwen moe * fix qwen moe
This commit is contained in:
@@ -27,6 +27,7 @@ from paddleformers.utils.log import logger
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.distributed.communication_op import \
|
||||
tensor_model_parallel_all_reduce
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
@@ -40,7 +41,6 @@ from fastdeploy.model_executor.layers.rotary_embedding import \
|
||||
DeepseekScalingRotaryEmbedding
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.platforms import current_platform
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import \
|
||||
@@ -109,7 +109,7 @@ class DeepSeekV3MoE(nn.Layer):
|
||||
prefix: str) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
weight_key_map = {
|
||||
"gate_weight_key": f"{prefix}.gate.weight",
|
||||
@@ -124,23 +124,23 @@ class DeepSeekV3MoE(nn.Layer):
|
||||
self.fused_moe = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.model_config.deepseekv3.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.deepseekv3.n_routed_experts,
|
||||
top_k=fd_config.model_config.deepseekv3.num_experts_per_tok,
|
||||
topk_method=fd_config.model_config.deepseekv3.topk_method,
|
||||
topk_group=fd_config.model_config.deepseekv3.topk_group,
|
||||
n_group=fd_config.model_config.deepseekv3.n_group,
|
||||
routed_scaling_factor=fd_config.model_config.deepseekv3.
|
||||
num_experts=fd_config.model_config.n_routed_experts,
|
||||
top_k=fd_config.model_config.num_experts_per_tok,
|
||||
topk_method=fd_config.model_config.topk_method,
|
||||
topk_group=fd_config.model_config.topk_group,
|
||||
n_group=fd_config.model_config.n_group,
|
||||
routed_scaling_factor=fd_config.model_config.
|
||||
routed_scaling_factor,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.model_config.deepseekv3.n_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.n_shared_experts
|
||||
shared_experts_intermediate_size = (
|
||||
self.num_shared_experts *
|
||||
fd_config.model_config.deepseekv3.moe_intermediate_size)
|
||||
fd_config.model_config.moe_intermediate_size)
|
||||
|
||||
self.shared_experts = DeepSeekV3MLP(
|
||||
fd_config=fd_config,
|
||||
@@ -178,18 +178,18 @@ class DeepseekV3MLAAttention(nn.Layer):
|
||||
prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.num_attention_heads = fd_config.model_config.num_attention_heads
|
||||
self.num_attention_heads_tp = self.num_attention_heads // self.tp_size
|
||||
|
||||
# MLA
|
||||
self.qk_nope_head_dim = fd_config.model_config.deepseekv3.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = fd_config.model_config.deepseekv3.qk_rope_head_dim
|
||||
self.qk_nope_head_dim = fd_config.model_config.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = fd_config.model_config.qk_rope_head_dim
|
||||
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
||||
self.v_head_dim = fd_config.model_config.deepseekv3.v_head_dim
|
||||
self.q_lora_rank = fd_config.model_config.deepseekv3.q_lora_rank
|
||||
self.kv_lora_rank = fd_config.model_config.deepseekv3.kv_lora_rank
|
||||
self.v_head_dim = fd_config.model_config.v_head_dim
|
||||
self.q_lora_rank = fd_config.model_config.q_lora_rank
|
||||
self.kv_lora_rank = fd_config.model_config.kv_lora_rank
|
||||
|
||||
self.attn_softmax_scale = self.qk_head_dim**-0.5
|
||||
self.rope_theta = fd_config.model_config.rope_theta
|
||||
@@ -255,7 +255,7 @@ class DeepseekV3MLAAttention(nn.Layer):
|
||||
qk_nope_head_dim=self.qk_nope_head_dim,
|
||||
v_head_dim=self.v_head_dim)
|
||||
|
||||
self.rope_scaling = fd_config.model_config.deepseekv3.rope_scaling
|
||||
self.rope_scaling = fd_config.model_config.rope_scaling
|
||||
if self.rope_scaling:
|
||||
mscale_all_dim = self.rope_scaling.get("mscale_all_dim", False)
|
||||
scaling_factor = self.rope_scaling["factor"]
|
||||
@@ -449,9 +449,9 @@ class DeepSeekV3DecoderLayer(nn.Layer):
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (fd_config.model_config.deepseekv3.n_routed_experts is not None
|
||||
if (fd_config.model_config.n_routed_experts is not None
|
||||
and layer_id
|
||||
>= fd_config.model_config.deepseekv3.first_k_dense_replace):
|
||||
>= fd_config.model_config.first_k_dense_replace):
|
||||
self.mlp = DeepSeekV3MoE(
|
||||
fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
@@ -525,8 +525,8 @@ class DeepSeekV3Model(nn.Layer):
|
||||
Initializer for the DeepSeekV3Model class.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "deepseek_v3"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "deepseek_v3"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config,
|
||||
@@ -539,7 +539,7 @@ class DeepSeekV3Model(nn.Layer):
|
||||
self.decoder_layers = nn.LayerList([
|
||||
DeepSeekV3DecoderLayer(
|
||||
fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -755,5 +755,5 @@ class DeepSeekV3PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
return mappings
|
||||
|
||||
@@ -25,7 +25,7 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
@@ -54,7 +54,7 @@ class Ernie4_5_MLP(nn.Layer):
|
||||
reduce_results: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
@@ -179,16 +179,16 @@ class Ernie4_5_MoE(nn.Layer):
|
||||
|
||||
self.fused_moe = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
moe_intermediate_size=fd_config.moe_config.moe_intermediate_size,
|
||||
num_experts=fd_config.moe_config.num_experts,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.moe_num_experts,
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.moe_config.moe_num_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
|
||||
if self.num_shared_experts > 0:
|
||||
shared_experts_hidden_dim = self.num_shared_experts * fd_config.moe_config.moe_intermediate_size
|
||||
shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
|
||||
self.shared_experts = Ernie4_5_MLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=shared_experts_hidden_dim,
|
||||
@@ -271,8 +271,8 @@ class Ernie4_5_DecoderLayer(nn.Layer):
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
and layer_id >= fd_config.moe_config.moe_layer_start_index):
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= fd_config.model_config.moe_layer_start_index):
|
||||
self.mlp = Ernie4_5_MoE(
|
||||
fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
@@ -281,7 +281,7 @@ class Ernie4_5_DecoderLayer(nn.Layer):
|
||||
else:
|
||||
self.mlp = Ernie4_5_MLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
|
||||
@@ -346,20 +346,20 @@ class Ernie4_5_Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "ernie"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "ernie"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype(),
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"))
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"))
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -367,7 +367,7 @@ class Ernie4_5_Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -466,8 +466,8 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
|
||||
shape=[0, self.fd_config.model_config.hidden_size],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
)
|
||||
for i in range(self.fd_config.moe_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_layers):
|
||||
for i in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
self.model.hidden_layers[i].mlp.fused_moe(fake_hidden_states)
|
||||
|
||||
def forward(
|
||||
@@ -559,7 +559,7 @@ class Ernie4_5_PretrainedModel(PretrainedModel):
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
"""
|
||||
get_tensor_parallel_mappings
|
||||
"""
|
||||
@@ -603,7 +603,7 @@ class Ernie4_5_PretrainedModel(PretrainedModel):
|
||||
)
|
||||
return final_actions
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
config.moe_num_experts,
|
||||
config.moe_layer_start_index,
|
||||
config.prefix_name,
|
||||
|
||||
@@ -25,12 +25,12 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.mtp_linear import ParallelEHProjection
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
@@ -47,7 +47,7 @@ class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
"""
|
||||
get_tensor_parallel_mappings
|
||||
"""
|
||||
@@ -237,7 +237,7 @@ class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
|
||||
moe_num_experts = 0
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
moe_num_experts,
|
||||
config.moe_layer_start_index,
|
||||
)
|
||||
@@ -262,13 +262,13 @@ class Ernie4_5_MTPModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.embeddings = fd_config.speculative_config.sharing_model.model.embeddings
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -398,8 +398,8 @@ class Ernie4_5_MTPForCausalLM(ModelForCasualLM):
|
||||
shape=[0, self.fd_config.model_config.hidden_size],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
)
|
||||
for i in range(self.fd_config.moe_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_layers):
|
||||
for i in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
self.model.hidden_layers[i].mlp.fused_moe(fake_hidden_states)
|
||||
|
||||
def forward(
|
||||
|
||||
@@ -1,167 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import copy
|
||||
|
||||
from fastdeploy.config import ModelConfig
|
||||
|
||||
from .dfnrope.modeling import DFNRopeVisionTransformerConfig
|
||||
|
||||
__all__ = [
|
||||
"Ernie4_5_VLMoeConfig",
|
||||
]
|
||||
|
||||
|
||||
class Ernie4_5_VLMoeConfig(ModelConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`~ErnieModel`]. It is used to instantiate an Ernie
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the Ernie-7B.
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the Ernie model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`~ErnieModel`] or [`~TFErnieModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
Example:
|
||||
```python
|
||||
>>> from paddleformers.transformer import ErnieModel, ErnieConfig
|
||||
|
||||
>>> # Initializing a Ernie ernie-7b style configuration
|
||||
>>> configuration = ErnieConfig()
|
||||
|
||||
>>> # Initializing a model from the ernie-7b style configuration
|
||||
>>> model = ErnieModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "erniemoevl"
|
||||
attribute_map = {
|
||||
"n_positions": "max_position_embeddings",
|
||||
"n_embd": "hidden_size",
|
||||
"n_layer": "num_hidden_layers",
|
||||
"n_head": "num_attention_heads",
|
||||
"n_inner": "intermediate_size",
|
||||
"activation_function": "hidden_act",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vision_config=None,
|
||||
im_patch_id=None,
|
||||
pixel_hidden_size=None, # None for fuyu
|
||||
modality_detach=False,
|
||||
temporal_conv_size=2,
|
||||
spatial_conv_size=2,
|
||||
mm_vocab_size=0, # vocab for mm specialtokens
|
||||
max_text_id=None,
|
||||
use_temporal_conv=True,
|
||||
moe_use_size_all2all=False,
|
||||
moe_num_attn_experts=False,
|
||||
moe_dense_experts_token_type_id: int = 3,
|
||||
moe_use_hard_gate: bool = True,
|
||||
moe_fuse_experts: bool = False,
|
||||
moe_use_token_type_bias: bool = False,
|
||||
disable_ffn_model_parallel=False,
|
||||
fuse_attn_ffn=True,
|
||||
rope_3d=True,
|
||||
freq_allocation=20,
|
||||
using_precision_check=False,
|
||||
use_recompute_resampler=False,
|
||||
resampler_fuse_rms_norm=False,
|
||||
moe_layer_feed_fake_token=False,
|
||||
moe_num_experts=0,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vision_config = DFNRopeVisionTransformerConfig(
|
||||
**vision_config) if vision_config else None
|
||||
self.im_patch_id = im_patch_id
|
||||
self.pixel_hidden_size = pixel_hidden_size
|
||||
self.modality_detach = modality_detach
|
||||
self.temporal_conv_size = temporal_conv_size
|
||||
self.spatial_conv_size = spatial_conv_size
|
||||
self.mm_vocab_size = mm_vocab_size
|
||||
self.max_text_id = max_text_id
|
||||
self.use_temporal_conv = use_temporal_conv
|
||||
|
||||
self.moe_use_size_all2all = moe_use_size_all2all
|
||||
self.moe_num_attn_experts = moe_num_attn_experts
|
||||
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
|
||||
self.moe_use_hard_gate = moe_use_hard_gate
|
||||
self.moe_fuse_experts = moe_fuse_experts
|
||||
self.moe_use_token_type_bias = moe_use_token_type_bias
|
||||
self.disable_ffn_model_parallel = disable_ffn_model_parallel
|
||||
|
||||
self.fuse_attn_ffn = fuse_attn_ffn
|
||||
self.rope_3d = rope_3d
|
||||
self.freq_allocation = freq_allocation
|
||||
self.using_precision_check = using_precision_check
|
||||
self.use_recompute_resampler = use_recompute_resampler
|
||||
self.resampler_fuse_rms_norm = resampler_fuse_rms_norm
|
||||
self.moe_layer_feed_fake_token = moe_layer_feed_fake_token
|
||||
self.moe_num_experts = moe_num_experts
|
||||
|
||||
@property
|
||||
def multimodel_experts(self) -> bool:
|
||||
"""是否有多种类型的experts."""
|
||||
return isinstance(self.moe_num_experts,
|
||||
(tuple, list)) and len(self.moe_num_experts) > 1
|
||||
|
||||
@property
|
||||
def use_moe(self) -> bool:
|
||||
"""
|
||||
Check if model is using MoE architecture.
|
||||
|
||||
Returns:
|
||||
bool: True if moe_num_experts > 0, False otherwise
|
||||
"""
|
||||
return sum(
|
||||
self.moe_num_experts
|
||||
) > 0 if self.multimodel_experts else self.moe_num_experts > 0
|
||||
|
||||
def to_dict(self, saving_file=False):
|
||||
"""to_dict"""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
if self.vision_config:
|
||||
output["vision_config"] = (
|
||||
self.vision_config.to_diff_dict() if isinstance(
|
||||
self.vision_config,
|
||||
(DFNRopeVisionTransformerConfig)) else self.vision_config)
|
||||
|
||||
output["model_type"] = self.__class__.model_type
|
||||
return output
|
||||
@@ -72,8 +72,8 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
prefix: str) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
moe_layer_start_index = fd_config.moe_config.moe_layer_start_index
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
moe_layer_start_index = fd_config.model_config.moe_layer_start_index
|
||||
if isinstance(moe_layer_start_index, int):
|
||||
text_moe_layer_start_index = moe_layer_start_index
|
||||
image_moe_layer_start_index = moe_layer_start_index
|
||||
@@ -81,10 +81,10 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
text_moe_layer_start_index = moe_layer_start_index[0]
|
||||
image_moe_layer_start_index = moe_layer_start_index[1]
|
||||
|
||||
moe_layer_end_index = fd_config.moe_config.moe_layer_end_index
|
||||
moe_layer_end_index = fd_config.model_config.moe_layer_end_index
|
||||
if moe_layer_end_index is None:
|
||||
text_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
image_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
text_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
image_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
elif isinstance(moe_layer_end_index, int):
|
||||
text_moe_layer_end_index = moe_layer_end_index
|
||||
image_moe_layer_end_index = moe_layer_end_index
|
||||
@@ -107,11 +107,11 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
self.mlp_text = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size[0],
|
||||
num_experts=fd_config.moe_config.num_experts[0],
|
||||
num_experts=fd_config.model_config.moe_num_experts[0],
|
||||
expert_id_offset=0,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
moe_tag="Text",
|
||||
weight_key_map=weight_key_map,
|
||||
@@ -120,7 +120,7 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
else:
|
||||
self.mlp_text = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}",
|
||||
)
|
||||
|
||||
@@ -139,11 +139,11 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
self.mlp_image = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size[1],
|
||||
num_experts=fd_config.moe_config.num_experts[1],
|
||||
expert_id_offset=fd_config.moe_config.num_experts[0],
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
num_experts=fd_config.model_config.moe_num_experts[1],
|
||||
expert_id_offset=fd_config.model_config.moe_num_experts[0],
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
moe_tag="Image",
|
||||
weight_key_map=weight_key_map,
|
||||
@@ -152,16 +152,16 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
else:
|
||||
self.mlp_image = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}",
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.moe_config.moe_num_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
|
||||
if self.num_shared_experts > 0:
|
||||
self.share_experts = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=self.num_shared_experts *
|
||||
fd_config.moe_config.moe_intermediate_size[0],
|
||||
fd_config.model_config.moe_intermediate_size[0],
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
reduce_results=False,
|
||||
)
|
||||
@@ -235,15 +235,15 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
super().__init__()
|
||||
layer_id = int(prefix.split(sep='.')[-1])
|
||||
|
||||
moe_layer_start_index = fd_config.moe_config.moe_layer_start_index
|
||||
moe_layer_start_index = fd_config.model_config.moe_layer_start_index
|
||||
if isinstance(moe_layer_start_index, list):
|
||||
min_moe_layer_start_index = min(moe_layer_start_index)
|
||||
else:
|
||||
min_moe_layer_start_index = moe_layer_start_index
|
||||
|
||||
max_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
if fd_config.moe_config.moe_layer_end_index is not None:
|
||||
moe_layer_end_index = fd_config.moe_config.moe_layer_end_index
|
||||
max_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
if fd_config.model_config.moe_layer_end_index is not None:
|
||||
moe_layer_end_index = fd_config.model_config.moe_layer_end_index
|
||||
if isinstance(moe_layer_start_index, list):
|
||||
max_moe_layer_end_index = max(moe_layer_end_index)
|
||||
else:
|
||||
@@ -257,7 +257,7 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
|
||||
assert min_moe_layer_start_index <= max_moe_layer_end_index
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= min_moe_layer_start_index
|
||||
and layer_id <= max_moe_layer_end_index):
|
||||
self.mlp = Ernie4_5_VLMoE(
|
||||
@@ -268,7 +268,7 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
else:
|
||||
self.mlp = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
|
||||
@@ -337,23 +337,23 @@ class Ernie4_5_VLModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.im_patch_id = fd_config.moe_config.im_patch_id
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.im_patch_id = fd_config.model_config.im_patch_id
|
||||
self._dtype = fd_config.model_config.dtype
|
||||
fd_config.model_config.prefix_name = "ernie"
|
||||
fd_config.model_config.pretrained_config.prefix_name = "ernie"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_VLDecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -361,7 +361,7 @@ class Ernie4_5_VLModel(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -748,7 +748,7 @@ class Ernie4_5_VLPretrainedModel(PretrainedModel):
|
||||
moe_layer_start_index = config.moe_layer_start_index
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
config.moe_num_experts,
|
||||
moe_layer_start_index,
|
||||
config.prefix_name,
|
||||
|
||||
@@ -53,7 +53,7 @@ class ModelForCasualLM(nn.Layer, ABC):
|
||||
"""
|
||||
Args:
|
||||
configs (dict): Configurations including parameters such as max_dec_len, min_dec_len, decode_strategy,
|
||||
ori_vocab_size, use_topp_sampling, etc.
|
||||
vocab_size, use_topp_sampling, etc.
|
||||
"""
|
||||
super(ModelForCasualLM, self).__init__()
|
||||
self.fd_config = configs
|
||||
|
||||
@@ -24,6 +24,7 @@ from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
@@ -34,7 +35,6 @@ from fastdeploy.model_executor.layers.linear import (
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen2MLP(nn.Layer):
|
||||
@@ -47,12 +47,12 @@ class Qwen2MLP(nn.Layer):
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.ffn_hidden_size * 2,
|
||||
output_size=fd_config.model_config.intermediate_size * 2,
|
||||
with_bias=False,
|
||||
activation=fd_config.model_config.hidden_act,
|
||||
)
|
||||
@@ -60,7 +60,7 @@ class Qwen2MLP(nn.Layer):
|
||||
self.down_proj = RowParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
input_size=fd_config.model_config.ffn_hidden_size,
|
||||
input_size=fd_config.model_config.intermediate_size,
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
with_bias=False,
|
||||
)
|
||||
@@ -227,21 +227,21 @@ class Qwen2Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "qwen2"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "qwen2"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen2DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -249,7 +249,7 @@ class Qwen2Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -427,6 +427,6 @@ class Qwen2PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
|
||||
return mappings
|
||||
|
||||
@@ -23,7 +23,8 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
@@ -34,7 +35,6 @@ from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen3MLP(Qwen2MLP):
|
||||
@@ -59,7 +59,7 @@ class Qwen3Attention(nn.Layer):
|
||||
self.qkv_proj = QKVParallelLinear(fd_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
with_bias=False)
|
||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
fd_config,
|
||||
@@ -85,7 +85,7 @@ class Qwen3Attention(nn.Layer):
|
||||
prefix=f"{prefix}.k_norm",
|
||||
begin_norm_axis=2)
|
||||
|
||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
|
||||
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
|
||||
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
|
||||
@@ -163,21 +163,21 @@ class Qwen3Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "model"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "model"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen3DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -185,7 +185,7 @@ class Qwen3Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -307,7 +307,7 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
split_or_merge_func
|
||||
@@ -358,5 +358,5 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
return mappings
|
||||
|
||||
@@ -23,20 +23,19 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
from fastdeploy.model_executor.layers.linear import (
|
||||
MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear)
|
||||
MergedColumnParallelLinear, RowParallelLinear)
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen3MLP(nn.Layer):
|
||||
@@ -49,13 +48,13 @@ class Qwen3MLP(nn.Layer):
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.ffn_hidden_size * 2,
|
||||
output_size=fd_config.model_config.intermediate_size * 2,
|
||||
with_bias=False,
|
||||
activation=fd_config.model_config.hidden_act,
|
||||
)
|
||||
@@ -63,7 +62,7 @@ class Qwen3MLP(nn.Layer):
|
||||
self.down_proj = RowParallelLinear(
|
||||
fd_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
input_size=fd_config.model_config.ffn_hidden_size,
|
||||
input_size=fd_config.model_config.intermediate_size,
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
with_bias=False,
|
||||
)
|
||||
@@ -115,14 +114,14 @@ class Qwen3DecoderLayer(nn.Layer):
|
||||
f"{prefix}.mlp.experts.{{}}.down_proj.weight",
|
||||
}
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
and layer_id >= fd_config.moe_config.moe_layer_start_index):
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= fd_config.model_config.moe_layer_start_index):
|
||||
|
||||
self.mlp = FusedMoE(fd_config,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size,
|
||||
num_experts=fd_config.moe_config.num_experts,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
num_experts=fd_config.model_config.moe_num_experts,
|
||||
top_k=fd_config.model_config.moe_topk,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map)
|
||||
else:
|
||||
@@ -199,21 +198,21 @@ class Qwen3MoeModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "model"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "model"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen3DecoderLayer(
|
||||
fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -221,7 +220,7 @@ class Qwen3MoeModel(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=1e-6,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -338,7 +337,7 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
# TODO not support TP split now, next PR will support TP.
|
||||
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
@@ -351,7 +350,7 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
num_attention_heads=config.num_attention_heads,
|
||||
)
|
||||
|
||||
def get_tensor_parallel_split_mappings(num_layers, moe_num_experts):
|
||||
def get_tensor_parallel_split_mappings(num_layers, num_experts):
|
||||
final_actions = {}
|
||||
|
||||
base_actions = {
|
||||
@@ -402,23 +401,23 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
for key, action in base_actions.items():
|
||||
for i in range(num_layers):
|
||||
newkey = key.replace("layers.0.", f"layers.{i}.")
|
||||
for j in range(moe_num_experts):
|
||||
for j in range(num_experts):
|
||||
newkey2 = newkey.replace("experts.0.", f"experts.{j}.")
|
||||
final_actions[newkey2] = action
|
||||
|
||||
return final_actions
|
||||
|
||||
moe_num_experts = 0
|
||||
num_experts = 0
|
||||
if isinstance(config.moe_num_experts, list):
|
||||
moe_num_experts = sum(config.moe_num_experts)
|
||||
num_experts = sum(config.moe_num_experts)
|
||||
elif isinstance(config.moe_num_experts, int):
|
||||
moe_num_experts = config.moe_num_experts
|
||||
num_experts = config.moe_num_experts
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Not support type of moe_num_experts [{type(config.moe_num_experts)}]"
|
||||
f"Not support type of num_experts [{type(config.moe_num_experts)}]"
|
||||
)
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers,
|
||||
moe_num_experts)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers,
|
||||
num_experts)
|
||||
|
||||
return mappings
|
||||
|
||||
@@ -36,10 +36,9 @@ def check_tensor_parallel_prerequisites(
|
||||
safetensor_keys: List[str],
|
||||
) -> None:
|
||||
"""check_tensor_parallel_prerequisites"""
|
||||
if fd_config.parallel_config.tensor_parallel_degree > 1:
|
||||
if fd_config.parallel_config.tensor_parallel_size > 1:
|
||||
tensor_parallel_map = cls._get_tensor_parallel_mappings(
|
||||
fd_config.model_config, is_split=True
|
||||
)
|
||||
fd_config.model_config.pretrained_config, is_split=True)
|
||||
if not tensor_parallel_map:
|
||||
logger.error(
|
||||
"filtered_quant_map should not be empty. \
|
||||
|
||||
Reference in New Issue
Block a user