mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
Simplify the Config code (#2770)
* simplify the code * fix vl * delete config * fix * perfect code * fix ci * fix xpu * fix xpu * fix server * resolve conflict * fix mtp * resolve conflict * fix xpu * fix xpu * fix vl * fix log * fix qwen moe * fix qwen moe * fix qwen moe
This commit is contained in:
@@ -59,13 +59,11 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
self.world_size: int = hcg.get_model_parallel_world_size()
|
||||
self.ring_id: int = hcg.get_model_parallel_group().id
|
||||
self.use_rope: bool = fd_config.model_config.use_rope
|
||||
self.rope_head_dim: int = fd_config.model_config.rope_head_dim
|
||||
self.use_ep: bool = fd_config.parallel_config.use_ep
|
||||
self.hidden_dropout_prob: float = fd_config.model_config.hidden_dropout_prob
|
||||
self.initializer_range: float = fd_config.model_config.initializer_range
|
||||
self.sequence_parallel: bool = fd_config.parallel_config.sequence_parallel
|
||||
self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
|
||||
self.freeze_embedding: bool = fd_config.model_config.freeze_embedding
|
||||
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
|
||||
self.params_dtype: str = params_dtype
|
||||
|
||||
@@ -104,15 +102,7 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
)
|
||||
|
||||
self.prefix = prefix
|
||||
|
||||
if self.freeze_embedding:
|
||||
self.word_embeddings.weight.learning_rate = 0.0
|
||||
if not self.use_rope:
|
||||
self.position_embeddings.weight.learning_rate = 0.0
|
||||
|
||||
self.dropout = nn.Dropout(self.hidden_dropout_prob)
|
||||
self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim),
|
||||
dtype="int8")
|
||||
|
||||
def load_state_dict(self, state_dict: Dict[str,
|
||||
paddle.Tensor | np.ndarray]):
|
||||
@@ -122,6 +112,7 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
Args:
|
||||
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
||||
"""
|
||||
a = state_dict[self.prefix + ".weight"]
|
||||
if self.tie_word_embeddings:
|
||||
self.word_embeddings.weight.set_value(
|
||||
get_tensor(state_dict[self.prefix + ".weight"]).astype(
|
||||
|
Reference in New Issue
Block a user