mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00
Simplify the Config code (#2770)
* simplify the code * fix vl * delete config * fix * perfect code * fix ci * fix xpu * fix xpu * fix server * resolve conflict * fix mtp * resolve conflict * fix xpu * fix xpu * fix vl * fix log * fix qwen moe * fix qwen moe * fix qwen moe
This commit is contained in:
@@ -21,14 +21,15 @@ from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
from paddleformers.trl import llm_utils
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
||||
QuantConfigBase
|
||||
from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
|
||||
class MoEPhase(Enum):
|
||||
"""
|
||||
The generation phase of the moe.
|
||||
@@ -37,274 +38,228 @@ class MoEPhase(Enum):
|
||||
PREFILL = 1
|
||||
DECODER = 2
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"rope_theta": 10000.0,
|
||||
"num_key_value_heads":-1,
|
||||
"start_layer_index": 0,
|
||||
"moe_num_shared_experts":0,
|
||||
"moe_layer_start_index": 0,
|
||||
"num_max_dispatch_tokens_per_rank":256,
|
||||
"moe_use_aux_free":False,
|
||||
"vocab_size": -1,
|
||||
"use_rope": True,
|
||||
"hidden_dropout_prob":0.0,
|
||||
"initializer_range":0.02,
|
||||
"max_position_embeddings":512,
|
||||
"quantization_config":None,
|
||||
"use_recompute_resampler":False,
|
||||
"use_temporal_conv":True,
|
||||
"resampler_fuse_rms_norm":False,
|
||||
"freq_allocation":20,
|
||||
"tie_word_embeddings":False,
|
||||
"rms_norm_eps":1e-5,
|
||||
}
|
||||
|
||||
class ModelConfig(PretrainedConfig):
|
||||
|
||||
class ModelConfig:
|
||||
"""
|
||||
The configuration class to store the configuration of a `LLM`.
|
||||
"""
|
||||
max_stop_seqs_num = 5
|
||||
stop_seqs_max_len = 8
|
||||
|
||||
architectures: list[str] = []
|
||||
|
||||
# NOTE(gongshaotain): form _load_model_init_val()
|
||||
top_p = 0.0
|
||||
temperature = 1.0
|
||||
rope_theta = 10000.0
|
||||
penalty_score = 1.0
|
||||
frequency_score = 0.0
|
||||
presence_score = 0.0
|
||||
min_length = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 100224,
|
||||
hidden_size: int = 4096,
|
||||
num_layers: int = 48,
|
||||
num_attention_heads: int = 32,
|
||||
num_key_value_heads: Optional[int] = None,
|
||||
hidden_act: str = "swiglu",
|
||||
hidden_dropout_prob: float = 0.0,
|
||||
max_position_embeddings: int = 512,
|
||||
max_seq_len: int = 512,
|
||||
initializer_range: float = 0.02,
|
||||
use_rope=True,
|
||||
rope_theta: int = 10000,
|
||||
rope_3d: bool = False,
|
||||
ori_vocab_size: int | None = None,
|
||||
moe_layer_start_index: Union[int, list[int], None] = None,
|
||||
moe_num_experts: Union[int, list[int], None] = None,
|
||||
moe_layer_end_index: Union[int, list[int], None] = None,
|
||||
moe_num_shared_experts: int | None = None,
|
||||
num_hidden_layers: int | None = None,
|
||||
prefix_name="",
|
||||
freeze_embedding=False,
|
||||
rope_head_dim=None,
|
||||
ffn_hidden_size: Optional[int] = None,
|
||||
dtype="bfloat16",
|
||||
start_layer_index: int = 0,
|
||||
head_dim: Optional[int] = None,
|
||||
tie_word_embeddings: bool = False,
|
||||
is_quantized: bool = False,
|
||||
rms_norm_eps: float = 1e-5,
|
||||
**kwargs,
|
||||
args,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
if num_hidden_layers is not None:
|
||||
self.num_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
if head_dim is None:
|
||||
self.max_stop_seqs_num = 5
|
||||
self.stop_seqs_max_len = 8
|
||||
|
||||
# NOTE(gongshaotain): form _load_model_init_val()
|
||||
self.top_p = 0.0
|
||||
self.temperature = 1.0
|
||||
self.rope_theta = 10000.0
|
||||
self.penalty_score = 1.0
|
||||
self.frequency_score = 0.0
|
||||
self.presence_score = 0.0
|
||||
self.min_length = 1
|
||||
self.model_name_or_path = ""
|
||||
|
||||
self.im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
self.is_quantized = False
|
||||
self.max_model_len = 0
|
||||
self.dtype = ""
|
||||
self.enable_logprob = False
|
||||
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
pretrained_config, _ = PretrainedConfig.get_config_dict(self.model_name_or_path)
|
||||
self.pretrained_config = PretrainedConfig.from_dict(pretrained_config)
|
||||
|
||||
# set attribute from pretrained_config
|
||||
for key, value in pretrained_config.items():
|
||||
setattr(self, key, value)
|
||||
|
||||
# we need set default value when not exist
|
||||
for key, value in PRETRAINED_INIT_CONFIGURATION.items():
|
||||
if not hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_attention_heads
|
||||
else:
|
||||
self.head_dim = head_dim
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.use_rope = use_rope
|
||||
self.rope_theta = rope_theta
|
||||
self.ori_vocab_size = ori_vocab_size or vocab_size
|
||||
self.max_seq_len = max_seq_len
|
||||
self.prefix_name = prefix_name
|
||||
self.freeze_embedding = freeze_embedding
|
||||
self.rope_head_dim = rope_head_dim
|
||||
self.moe_layer_start_index = moe_layer_start_index
|
||||
self.moe_num_experts = moe_num_experts
|
||||
self.moe_num_shared_experts = moe_num_shared_experts
|
||||
self.moe_layer_end_index = moe_layer_end_index
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
self.rope_3d = rope_3d
|
||||
self.start_layer_index = start_layer_index
|
||||
self.dtype = dtype
|
||||
self.tie_word_embeddings = tie_word_embeddings
|
||||
self.is_quantized = is_quantized
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
|
||||
if hasattr(self, "vision_config"):
|
||||
self.vision_config = PretrainedConfig.from_dict(self.vision_config)
|
||||
|
||||
@dataclass
|
||||
class MoEConfig:
|
||||
"""
|
||||
Configuration for MoE.
|
||||
"""
|
||||
num_experts: Union[int, list[int], None] = None
|
||||
top_k: int = 8
|
||||
moe_intermediate_size: int = -1
|
||||
num_experts_per_rank: int = -1
|
||||
num_experts_start_offset: int = -1
|
||||
self.ori_vocab_size = self.vocab_size
|
||||
if "Ernie4_5_ForCausalLM" in self.architectures or "Ernie4_5_MoeForCausalLM" in self.architectures:
|
||||
self.ori_vocab_size = args["ori_vocab_size"]
|
||||
|
||||
moe_num_shared_experts = (0, )
|
||||
moe_layer_start_index: Union[int, list[int], None] = None
|
||||
moe_layer_end_index: Union[int, list[int], None] = None
|
||||
moe_use_aux_free: bool = False
|
||||
num_max_dispatch_tokens_per_rank = 256
|
||||
im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ParallelConfig:
|
||||
"""Configuration for the distributed execution."""
|
||||
block_size = 16 # The block size for processing.
|
||||
sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
use_ep = False # Whether to enable Expert Parallelism
|
||||
moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
msg_queue_id = 1 # mesage queue id
|
||||
tensor_parallel_rank = None # TP rank ID
|
||||
tensor_parallel_degree = None # TP degree
|
||||
expert_parallel_rank = None # EP rank ID
|
||||
expert_parallel_degree = None # EP degree
|
||||
# The embedding weight distributed on your gpu cards is divided by row or column.
|
||||
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
||||
# but hidden_size can, we can consider split embedding weight by column.
|
||||
"""
|
||||
From old wersion worker args
|
||||
TODO(gongshaotian): Reclassify
|
||||
"""
|
||||
model_name_or_path: str = "./output"
|
||||
max_num_seqs: int = 34
|
||||
# Set default block num for profile run
|
||||
max_block_num: int = 2000
|
||||
# block size
|
||||
block_size: int = 64
|
||||
# Engine worker queue port
|
||||
engine_worker_queue_port: int = 9923
|
||||
# Max model len
|
||||
max_model_len: int = 3072 # max_seq_len
|
||||
# cuda visible devices
|
||||
device_ids: str = "0"
|
||||
# Input dtype
|
||||
dtype: str = "bfloat16"
|
||||
# Encoder's decoder num
|
||||
enc_dec_block_num: int = 1
|
||||
# KV cache ratio for input
|
||||
kv_cache_ratio: float = 0.7
|
||||
# First token id
|
||||
first_token_id: int = 1
|
||||
# Gpu memory utilization
|
||||
gpu_memory_utilization: float = 0.9
|
||||
# Process ID of engine
|
||||
engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
do_profile: bool = False
|
||||
#
|
||||
pad_token_id: int = -1
|
||||
#
|
||||
eos_tokens_lens: int = 2
|
||||
# Enable chunked prefill
|
||||
enable_chunked_prefill: str = "store_true"
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
self.use_ep = False # Whether to enable Expert Parallelism
|
||||
self.moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
self.msg_queue_id = 1 # mesage queue id
|
||||
|
||||
max_num_batched_tokens: int = 2048
|
||||
# enable prefix cache
|
||||
enable_prefix_caching = None
|
||||
# splitwise role
|
||||
splitwise_role: str = "mixed"
|
||||
# guided decoding backend
|
||||
guided_decoding_backend: str = None
|
||||
# disable any whitespace for guided decoding
|
||||
disable_any_whitespace: bool = True
|
||||
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
||||
enable_custom_all_reduce: str = "store_true"
|
||||
tensor_parallel_rank, tensor_parallel_size = llm_utils.init_dist_env()
|
||||
self.tensor_parallel_rank = tensor_parallel_rank # TP rank ID
|
||||
self.tensor_parallel_size = tensor_parallel_size # TP degree
|
||||
self.expert_parallel_rank = int(tensor_parallel_rank / tensor_parallel_size) # EP rank ID
|
||||
self.expert_parallel_size = 1 # EP degree
|
||||
# The embedding weight distributed on your gpu cards is divided by row or column.
|
||||
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
||||
# but hidden_size can, we can consider split embedding weight by column.
|
||||
"""
|
||||
From old wersion worker args
|
||||
TODO(gongshaotian): Reclassify
|
||||
"""
|
||||
self.model_name_or_path: str = "./output"
|
||||
self.max_num_seqs: int = 34
|
||||
# Set default block num for profile run
|
||||
self.max_block_num: int = 2000
|
||||
# block size
|
||||
self.block_size: int = 64
|
||||
# Engine worker queue port
|
||||
self.engine_worker_queue_port: int = 9923
|
||||
# Max model len
|
||||
self.max_model_len: int = 3072 # max_seq_len
|
||||
# cuda visible devices
|
||||
self.device_ids: str = "0"
|
||||
# Input dtype
|
||||
self.dtype: str = "bfloat16"
|
||||
# Encoder's decoder num
|
||||
self.enc_dec_block_num: int = 1
|
||||
# KV cache ratio for input
|
||||
self.kv_cache_ratio: float = 0.7
|
||||
# First token id
|
||||
self.first_token_id: int = 1
|
||||
# Gpu memory utilization
|
||||
self.gpu_memory_utilization: float = 0.9
|
||||
# Process ID of engine
|
||||
self.engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
self.do_profile: bool = False
|
||||
#
|
||||
self.pad_token_id: int = -1
|
||||
#
|
||||
self.eos_tokens_lens: int = 2
|
||||
# Enable chunked prefill
|
||||
self.enable_chunked_prefill: bool = False
|
||||
|
||||
self.max_num_batched_tokens: int = 2048
|
||||
# enable prefix cache
|
||||
self.enable_prefix_caching = None
|
||||
# splitwise role
|
||||
self.splitwise_role: str = "mixed"
|
||||
# guided decoding backend
|
||||
self.guided_decoding_backend: str = None
|
||||
# disable any whitespace for guided decoding
|
||||
self.disable_any_whitespace: bool = True
|
||||
self.pod_ip: str = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
self.use_ep = args["expert_parallel_size"] > 1
|
||||
if self.splitwise_role == "mixed":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
elif self.splitwise_role == "prefill":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
elif self.splitwise_role == "decode":
|
||||
self.moe_phase = MoEPhase.DECODER
|
||||
else:
|
||||
raise NotImplementedError
|
||||
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
||||
self.enable_custom_all_reduce: bool = False
|
||||
|
||||
@dataclass
|
||||
class SpeculativeConfig:
|
||||
"""
|
||||
Configuration for speculative decoding.
|
||||
"""
|
||||
# speculative method, choose in [None, "ngram_match", "mtp"]
|
||||
method: Optional[str] = None
|
||||
# the max length of speculative tokens
|
||||
num_speculative_tokens: int = 1
|
||||
# the max length of candidate tokens for speculative method
|
||||
max_candidate_len: int = 5
|
||||
# the max length of verify window for speculative method
|
||||
verify_window: int = 2
|
||||
# ngram match
|
||||
max_ngram_size: int = 5
|
||||
# model for mtp/eagle/draft_model
|
||||
model_name_or_path: Optional[str] = None
|
||||
# quantization of model
|
||||
quantization: Optional[str] = None
|
||||
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
||||
# Fixed now
|
||||
num_gpu_block_expand_ratio: Optional[float] = 1
|
||||
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
||||
# ["main", "mtp"]
|
||||
model_type: Optional[str] = "main"
|
||||
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
||||
# A trick method is currently used to enable this sharing.
|
||||
# This will be replaced with a more standardized solution in the future.
|
||||
sharing_model = None
|
||||
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
||||
# This means no tokens from MTP are accepted.
|
||||
# This ensures that the specified simulation acceptance rate is not affected.
|
||||
benchmark_mode: bool = False
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
# speculative method, choose in [None, "ngram_match", "mtp"]
|
||||
self.method: Optional[str] = None
|
||||
# the max length of speculative tokens
|
||||
self.num_speculative_tokens: int = 1
|
||||
# the max length of candidate tokens for speculative method
|
||||
self.max_candidate_len: int = 5
|
||||
# the max length of verify window for speculative method
|
||||
self.verify_window: int = 2
|
||||
# ngram match
|
||||
self.max_ngram_size: int = 5
|
||||
# model for mtp/eagle/draft_model
|
||||
self.model_name_or_path: Optional[str] = None
|
||||
# quantization of model
|
||||
self.quantization: Optional[str] = None
|
||||
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
||||
# Fixed now
|
||||
self.num_gpu_block_expand_ratio: Optional[float] = 1
|
||||
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
||||
# ["main", "mtp"]
|
||||
self.model_type: Optional[str] = "main"
|
||||
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
||||
# A trick method is currently used to enable this sharing.
|
||||
# This will be replaced with a more standardized solution in the future.
|
||||
self.sharing_model = None
|
||||
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
||||
# This means no tokens from MTP are accepted.
|
||||
# This ensures that the specified simulation acceptance rate is not affected.
|
||||
self.benchmark_mode: bool = False
|
||||
|
||||
#TODO(YuanRisheng): The name of the server args is different from the name of the SpeculativeConfig.
|
||||
#We temperately add the name map here and will delete it in future.
|
||||
name_map = {"speculative_method": "method",
|
||||
"speculative_max_draft_token_num": "num_speculative_tokens",
|
||||
"speculative_model_name_or_path": "model_name_or_path",
|
||||
"speculative_model_quantization": "quantization",
|
||||
"speculative_benchmark_mode": "benchmark_mode"}
|
||||
|
||||
for key, value in args.items():
|
||||
if key in name_map.keys() and hasattr(self, name_map[key]):
|
||||
setattr(self, name_map[key], value)
|
||||
|
||||
@dataclass
|
||||
class DeviceConfig:
|
||||
"""
|
||||
Configuration for device settings.
|
||||
"""
|
||||
device_type = "cuda"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.device_type = "cuda"
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
class GraphOptimizationConfig:
|
||||
"""The Top-level graph optimization contral corresponds to different backends.
|
||||
- 0: dyncmic graph
|
||||
- 1: static graph
|
||||
- 2: static graph + cinn compilation backend
|
||||
"""
|
||||
graph_opt_level: int = 0
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- False: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
- With dyncmic graph backend: ...
|
||||
- With static grpah backend: WIP
|
||||
"""
|
||||
use_cudagraph: bool = False
|
||||
"""Sizes to capture cudagraph.
|
||||
- None (default): capture sizes are inferred from llm config.
|
||||
- list[int]: capture sizes are specified as given."""
|
||||
cudagraph_capture_sizes: Optional[list[int]] = None
|
||||
""" Number of warmup runs for cudagraph. """
|
||||
cudagraph_num_of_warmups: int = 2
|
||||
"""Whether to copy input tensors for cudagraph.
|
||||
If the caller can guarantee that the same input buffers
|
||||
are always used, it can set this to False. Otherwise, it should
|
||||
set this to True."""
|
||||
cudagraph_copy_inputs: bool = False
|
||||
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
||||
CudaGraphBackend will split these operations from the static graph.
|
||||
Example usage:
|
||||
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
||||
|
||||
Note: If want to use subgraph capture functionality in a dynamic graph,
|
||||
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
||||
only to the layer where CUDA graph functionality is required.
|
||||
"""
|
||||
cudagraph_splitting_ops = Optional[list[str]]
|
||||
""""whether to use a full cuda graph for the entire forward pass rather than
|
||||
splitting certain operations such as attention into subgraphs.
|
||||
Thus this flag cannot be used together with splitting_ops."""
|
||||
full_cuda_graph: bool = False
|
||||
|
||||
max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
|
||||
# CINN Config ...
|
||||
|
||||
def init_with_cudagrpah_size(self,
|
||||
cudagraph_capture_sizes: list[int]) -> None:
|
||||
"""To complete the initialization of config,
|
||||
@@ -338,18 +293,67 @@ class GraphOptimizationConfig:
|
||||
|
||||
def __init__(self,
|
||||
enable_static_graph_inference: bool = False,
|
||||
use_cudagraph: bool = False,
|
||||
max_capture_batch_size: int = 64):
|
||||
""" """
|
||||
max_capture_batch_size: int = 64,
|
||||
args = None):
|
||||
"""The Top-level graph optimization contral corresponds to different backends.
|
||||
- 0: dyncmic graph
|
||||
- 1: static graph
|
||||
- 2: static graph + cinn compilation backend
|
||||
"""
|
||||
self.graph_opt_level: int = 0
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- False: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
- With dyncmic graph backend: ...
|
||||
- With static grpah backend: WIP
|
||||
"""
|
||||
self.use_cudagraph: bool = False
|
||||
"""Sizes to capture cudagraph.
|
||||
- None (default): capture sizes are inferred from llm config.
|
||||
- list[int]: capture sizes are specified as given."""
|
||||
self.cudagraph_capture_sizes: Optional[list[int]] = None
|
||||
""" Number of warmup runs for cudagraph. """
|
||||
self.cudagraph_num_of_warmups: int = 2
|
||||
"""Whether to copy input tensors for cudagraph.
|
||||
If the caller can guarantee that the same input buffers
|
||||
are always used, it can set this to False. Otherwise, it should
|
||||
set this to True."""
|
||||
self.cudagraph_copy_inputs: bool = False
|
||||
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
||||
CudaGraphBackend will split these operations from the static graph.
|
||||
Example usage:
|
||||
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
||||
|
||||
Note: If want to use subgraph capture functionality in a dynamic graph,
|
||||
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
||||
only to the layer where CUDA graph functionality is required.
|
||||
"""
|
||||
self.cudagraph_splitting_ops = Optional[list[str]]
|
||||
""""whether to use a full cuda graph for the entire forward pass rather than
|
||||
splitting certain operations such as attention into subgraphs.
|
||||
Thus this flag cannot be used together with splitting_ops."""
|
||||
self.full_cuda_graph: bool = False
|
||||
|
||||
self.max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
self.batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
|
||||
# CINN Config ...
|
||||
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
capture_size = [i for i in range(1, max_capture_batch_size + 1)]
|
||||
self.init_with_cudagrpah_size(cudagraph_capture_sizes=capture_size)
|
||||
self.use_cudagraph = use_cudagraph
|
||||
#TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
||||
if enable_static_graph_inference:
|
||||
self.graph_opt_level = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadConfig:
|
||||
"""
|
||||
Configuration for dynamic weight loading strategies
|
||||
@@ -363,37 +367,39 @@ class LoadConfig:
|
||||
- 'meta': provide RL traing worker, no_weights_load
|
||||
- None: No dynamic loading
|
||||
"""
|
||||
use_fastsafetensor: bool = False
|
||||
dynamic_load_weight: bool = False
|
||||
load_strategy: Optional[Literal['ipc', 'ipc_no_reshard', 'ipc_snapshot', 'meta']] = None
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
||||
self.dynamic_load_weight: bool = False
|
||||
self.load_strategy: Optional[Literal['ipc', 'ipc_no_reshard', 'ipc_snapshot', 'meta']] = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.load_strategy is not None and not self.dynamic_load_weight:
|
||||
raise ValueError("Load strategy requires dynamic_load_weight=True")
|
||||
|
||||
if self.dynamic_load_weight and self.load_strategy is None:
|
||||
raise ValueError("Must specify load_strategy when dynamic_load_weight is True")
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoRAConfig:
|
||||
""" LoRA Config """
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class KVCacheConfig:
|
||||
""" KV Cache Config """
|
||||
cache_quant_dtype: str = "none"
|
||||
|
||||
|
||||
@dataclass
|
||||
class DecodingConfig:
|
||||
"""
|
||||
Configuration for decoding
|
||||
"""
|
||||
pad_token_id = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.pad_token_id = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
@dataclass
|
||||
class FDConfig:
|
||||
@@ -411,7 +417,6 @@ class FDConfig:
|
||||
load_config: LoadConfig = field(default=None, init=True)
|
||||
quant_config: Optional[QuantConfigBase] = None
|
||||
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
||||
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
||||
decoding_config: DecodingConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kv_cache_config: KVCacheConfig = field(default=None,
|
||||
|
Reference in New Issue
Block a user