add model zoo

This commit is contained in:
jiangjiajun
2022-07-06 03:12:43 +00:00
parent 9d87046d78
commit 4c07d198ba
26 changed files with 560 additions and 639 deletions

131
docs/api/runtime_option.md Normal file
View File

@@ -0,0 +1,131 @@
# RuntimeOption 推理后端配置
FastDeploy产品中的Runtime包含多个推理后端其各关系如下所示
| 模型格式\推理后端 | ONNXRuntime | Paddle Inference | TensorRT | OpenVINO |
| :--------------- | :---------- | :--------------- | :------- | :------- |
| Paddle | 支持(内置Paddle2ONNX) | 支持 | 支持(内置Paddle2ONNX) | 支持 |
| ONNX | 支持 | 支持(需通过X2Paddle转换) | 支持 | 支持 |
各Runtime支持的硬件情况如下
| 硬件/推理后端 | ONNXRuntime | Paddle Inference | TensorRT | OpenVINO |
| :--------------- | :---------- | :--------------- | :------- | :------- |
| CPU | 支持 | 支持 | 不支持 | 支持 |
| GPU | 支持 | 支持 | 支持 | 支持 |
在各模型的,均通过`RuntimeOption`来配置推理的后端以及推理时的参数例如在python中加载模型后可通过如下代码打印推理配置
```
model = fastdeploy.vision.ultralytics.YOLOv5("yolov5s.onnx")
print(model.runtime_option)
```
可看下如下输出
```
RuntimeOption(
backend : Backend.ORT # 推理后端ONNXRuntime
cpu_thread_num : 8 # CPU线程数仅当使用CPU推理时有效
device : Device.CPU # 推理硬件为CPU
device_id : 0 # 推理硬件id针对GPU
model_file : yolov5s.onnx # 模型文件路径
params_file : # 参数文件路径
model_format : Frontend.ONNX # 模型格式
ort_execution_mode : -1 # 前辍为ort的表示为ONNXRuntime后端专用参数
ort_graph_opt_level : -1
ort_inter_op_num_threads : -1
trt_enable_fp16 : False # 前辍为trt的表示为TensorRT后端专用参数
trt_enable_int8 : False
trt_max_workspace_size : 1073741824
trt_serialize_file :
trt_fixed_shape : {}
trt_min_shape : {}
trt_opt_shape : {}
trt_max_shape : {}
trt_max_batch_size : 32
)
```
## Python 使用
### RuntimeOption类
`fastdeploy.RuntimeOption()`配置选项
#### 配置选项
> * **backend**(fd.Backend): `fd.Backend.ORT`/`fd.Backend.TRT`/`fd.Backend.PDINFER`/`fd.Backend.OPENVINO`等
> * **cpu_thread_num**(int): CPU推理线程数仅当CPU推理时有效
> * **device**(fd.Device): `fd.Device.CPU`/`fd.Device.GPU`等
> * **device_id**(int): 设备id在GPU下使用
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **model_format**(Frontend): 模型格式, `fd.Frontend.PADDLE`/`fd.Frontend.ONNX`
> * **ort_execution_mode**(int): ORT后端执行方式0表示按顺序执行所有算子1表示并行执行算子默认为-1即按ORT默认配置方式执行
> * **ort_graph_opt_level**(int): ORT后端图优化等级0禁用图优化1基础优化 2额外拓展优化99全部优化 默认为-1即按ORT默认配置方式执行
> * **ort_inter_op_num_threads**(int): 当`ort_execution_mode`为1时此参数设置算子间并行的线程数
> * **trt_enable_fp16**(bool): TensorRT开启FP16推理
> * **trt_enable_int8**(bool): TensorRT开启INT8推理
> * **trt_max_workspace_size**(int): TensorRT配置的`max_workspace_size`参数
> * **trt_fixed_shape**(dict[str : list[int]]): 当模型为动态shape但实际推理时输入shape保持不变则通过此参数配置输入的固定shape
> * **trt_min_shape**(dict[str : list[int]]): 当模型为动态shape且实际推理时输入shape也会变化通过此参数配置输入的最小shape
> * **trt_opt_shape**(dict[str : list[int]]): 当模型为动态shape, 且实际推理时输入shape也会变化通过此参数配置输入的最优shape
> * **trt_max_shape**(dict[str : list[int]]): 当模型为动态shape且实际推理时输入shape也会变化通过此参数配置输入的最大shape
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
```
import fastdeploy as fd
option = fd.RuntimeOption()
option.backend = fd.Backend.TRT
# 当使用TRT后端且为动态输入shape时
# 需配置输入shape信息
option.trt_min_shape = {"images": [1, 3, 224, 224]}
option.trt_opt_shape = {"images": [4, 3, 224, 224]}
option.trt_max_shape = {"images": [8, 3, 224, 224]}
model = fd.vision.ppcls.Model("resnet50/inference.pdmodel",
"resnet50/inference.pdiparams",
"resnet50/inference_cls.yaml",
runtime_option=option)
```
## C++ 使用
### RuntimeOption 结构体
`fastdeploy::RuntimeOption()`配置选项
#### 配置选项
> * **backend**(fastdeploy::Backend): `Backend::ORT`/`Backend::TRT`/`Backend::PDINFER`/`Backend::OPENVINO`等
> * **cpu_thread_num**(int): CPU推理线程数仅当CPU推理时有效
> * **device**(fastdeploy::Device): `Device::CPU`/`Device::GPU`等
> * **device_id**(int): 设备id在GPU下使用
> * **model_file**(string): 模型文件路径
> * **params_file**(string): 参数文件路径
> * **model_format**(fastdeploy::Frontend): 模型格式, `Frontend::PADDLE`/`Frontend::ONNX`
> * **ort_execution_mode**(int): ORT后端执行方式0表示按顺序执行所有算子1表示并行执行算子默认为-1即按ORT默认配置方式执行
> * **ort_graph_opt_level**(int): ORT后端图优化等级0禁用图优化1基础优化 2额外拓展优化99全部优化 默认为-1即按ORT默认配置方式执行
> * **ort_inter_op_num_threads**(int): 当`ort_execution_mode`为1时此参数设置算子间并行的线程数
> * **trt_enable_fp16**(bool): TensorRT开启FP16推理
> * **trt_enable_int8**(bool): TensorRT开启INT8推理
> * **trt_max_workspace_size**(int): TensorRT配置的`max_workspace_size`参数
> * **trt_fixed_shape**(map<string, vector<int>>): 当模型为动态shape但实际推理时输入shape保持不变则通过此参数配置输入的固定shape
> * **trt_min_shape**(map<string, vector<int>>): 当模型为动态shape且实际推理时输入shape也会变化通过此参数配置输入的最小shape
> * **trt_opt_shape**(map<string, vector<int>>): 当模型为动态shape, 且实际推理时输入shape也会变化通过此参数配置输入的最优shape
> * **trt_max_shape**(map<string, vector<int>>): 当模型为动态shape且实际推理时输入shape也会变化通过此参数配置输入的最大shape
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
```
#include "fastdeploy/vision.h"
int main() {
auto option = fastdeploy::RuntimeOption();
option.trt_min_shape["images"] = {1, 3, 224, 224};
option.trt_opt_shape["images"] = {4, 3, 224, 224};
option.trt_max_shape["images"] = {8, 3, 224, 224};
auto model = fastdeploy::vision::ppcls.Model(
"resnet50/inference.pdmodel",
"resnet50/inference.pdiparams",
"resnet50/inference_cls.yaml",
option);
return 0;
}
```

View File

@@ -1,110 +0,0 @@
# C++部署
## 准备预测库
参考编译文档[FastDeploy编译](../compile/README.md)进行编译,或直接使用如下预编译库
| 编译库 | 平台 | 支持设备 | 说明 |
|:------ | :---- | :------- | :----- |
|[fastdeploy-linux-x64-0.0.3.tgz](https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz) | Linux | CPU | 集成ONNXRuntime |
|[fastdeploy-linux-x64-gpu-0.0.3.tgz](https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-gpu-0.0.3.tgz) | Linux | CPU/GPU | 集成ONNXRuntime, TensorRT |
|[fastdeploy-osx-x86_64-0.0.3.tgz](https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-osx-x86_64-0.0.3.tgz) | Mac OSX Intel CPU | CPU | 集成ONNXRuntime |
|[fastdeploy-osx-arm64-0.0.3.tgz](https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-osx-arm64-0.0.3.tgz) | Mac OSX M1 CPU | CPU | 集成ONNXRuntime |
## 使用
FastDeploy提供了多种领域内的模型可快速完成模型的部署本文档以YOLOv5在Linux上的部署为例
```
# 下载库并解压
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
tar xvf fastdeploy-linux-x64-0.0.3.tgz
# 下载模型和测试图片
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.onnx
wget https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg
```
### YOLOv5预测代码
准备如下`yolov5.cc`代码
```
#include "fastdeploy/vision.h"
int main() {
typedef vis = fastdeploy::vision;
auto model = vis::ultralytics::YOLOv5("yolov5s.onnx"); // 加载模型
if (!model.Initialized()) { // 判断模型是否初始化成功
std::cerr << "Initialize failed." << std::endl;
return -1;
}
cv::Mat im = cv::imread("bus.jpg"); // 读入图片
vis::DetectionResult res;
if (!model.Predict(&im, &res)) { // 预测图片
std::cerr << "Prediction failed." << std::endl;
return -1;
}
std::cout << res.Str() << std::endl; // 输出检测结果
return 0;
}
```
### 编译代码
编译前先完成CMakeLists.txt的开发`yolov5.cc`同级目录创建`CMakeLists.txt`文件,内容如下
```
PROJECT(yolov5_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.16)
# 在低版本ABI环境中可通过如下代码进行兼容性编译
# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
# 在下面指定下载解压后的fastdeploy库路径
set(FASTDEPLOY_INSTALL_DIR /ssd1/download/fastdeploy-linux-x64-0.0.3/)
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(yolov5_demo ${PROJECT_SOURCE_DIR}/yolov5.cc)
message(${FASTDEPLOY_LIBS})
# 添加FastDeploy库依赖
target_link_libraries(yolov5_demo ${FASTDEPLOY_LIBS})
~
```
此时当前目录结构如下所示
```
- demo_directory
|___fastdeploy-linux-x64-0.0.3/ # 预测库解压
|___yolov5.cc # 示例代码
|___CMakeLists.txt # cmake文件
|___yolov5s.onnx # 模型文件
|___bus.jpeg # 测试图片
```
执行如下命令进行编译
```
cmake .
make -j
```
编译后可执行二进制即为当前目录下的`yolov5_demo`,使用如下命令执行
```
./yolov5_demo
```
即会加载模型进行推理,得到结果如下
```
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
223.395126,403.948669, 345.337189, 867.339050, 0.856906, 0
668.301758,400.781372, 808.441772, 882.534973, 0.829716, 0
50.210758,398.571289, 243.123383, 905.016846, 0.805375, 0
23.768217,214.979355, 802.627869, 778.840820, 0.756311, 5
0.737200,552.281006, 78.617218, 890.945007, 0.363471, 0
```

View File

@@ -1,24 +0,0 @@
# FastDeploy
FastDeploy分为`Runtime``应用`模块。
## Runtime
`Runtime`对应于不同硬件上的不同后端大部分情况下一种硬件对应于一种后端但对于CPU、GPU, 存在多种后端,用户可根据自己的需求进行选择。
| Runtime | 后端 |
| :------ | :---- |
| CPU(x86_64) | `fastdeploy::Backend::ORT` |
| GPU(Nvidia) | `fastdeploy::Backend::ORT` / `fastdeploy::Backend::TRT` |
具体文档参考 [Runtime文档](runtime.md)
## 应用
应用是基于`Runtime`提供的上层模型推理,集成了模型端到端的推理功能
- Vision
- Text
- Audio
具体文档参考 [Vision文档](vision.md)

View File

@@ -1,63 +0,0 @@
# 模型开发
`ultralytics/yolov5`为例,在`fastdeploy/vision`目录下新增`ultralytics`目录,并创建代码`yolov5.h`
定义`YOLOv5`
```
class YOLOv5 : public FastDeployModel {
public:
// 构造函数指定模型路径并默认为ONNX格式
YOLOv5(const std::string& model_file)
: FastDeployModel(model_file, "", Frontend::ONNX) {
size = {640, 640}; // 图像预处理resize大小
// 图像填充值
padding_value = {114.0, 114.0, 114.0};
// 是否只填充到满足stride的最小方框即可
bool is_mini_pad = false;
// 是否支持图像resize超过原图尺寸
bool is_scale_up = true;
// 步长padding到长宽为stride的倍数
stride = 32;
// 通过下面的两个参数来说明模型在CPU/GPU上支持的后端种类
// 指定Device后默认情况下会优先选择最前的后端
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
}
std::string ModelName() const; // 返回模型名
// 模型初始化, 须在此函数中主动调用基类的`InitBackend()`函数
// 来初始化runtime
// 一些模型前后处理的初始化也可在此函数中如ppdet/ppcls创建一个
// 数据预处理pipeline
bool Init();
// 预处理其中输入是vision::Mat结构输出是FDTensor
// 输出提供给runtime进行推理使用
bool Preprocess(Mat* mat, FDTensor* output);
// 后处理输入是runtime的输入FDTensor
// 一些跟模型相关的预处理参数
bool Postprocess(FDTensor& tensor, DetectionResult* res, float conf_thresh, float nms_iou_thresh);
// 端到端的推理函数,包含前后处理
// 因此一般也建议将后处理的部分参数放在这个接口中
bool Predict(cv::Mat* im, DetectionResult* result, float conf_thresh = 0.25, float nms_iou_thresh = 0.5);
};
```
模型的实现上,并没有特别强的规范约束,但是
- 1. 一定要继承`FastDeployModel`
- 2. 确定可用的`valid_cpu_backends``valid_gpu_backends`
- 3. 要实现`Init()`/`ModelName()`/`Predict()`三个接口
- 4. 建议统一为`Preprocess``Postprocess`两个接口作为前后处理所用
## 其它
`vision`中,会提供几类基础的数据结构使用,包括`vision::ClassifyResult``vision::DetectionResult``vision::SegmentationResult`等作为模型常见的输出结构。 但难免会遇到新的输出结构不在这几类中,对于一定要定制化的数据结构,默认按照下面方式处理
- 1. 如果是大量模型通用的结构,仍然实现在`vision/common.h`中,作为通用的输出结构
- 2. 如果只是某个模型需要,则实现在如`vision/ultralytics/yolov5.h`同时需要自行为此结构体进行pybind封装

View File

@@ -1,135 +0,0 @@
# fastdeploy::Runtime
## FDTensor Runtime的输入输出数据结构
```
struct FDTensor {
std::vector<int64_t> shape; // 形状
std::string name; // 命名
FDDataType dtype; // 数据类型
Device device = Device::CPU; // 数据存放设备
void* MutableData(); // 获取tensor内存buffer指针
// 获取tensor数据如若tensor数据在其它设备
// 此函数会先将数据拷贝至CPU再返回指向
// CPU内存buffer的指针
void* Data();
// 初始化Tensor并复用外部数据指针
// Tensor的内存buffer将由外部的调用者来创建或释放
void SetExternalData(const std::vector<int>& new_shape,
const FDDataType& data_type,
void* data_buffer
const Device& dev);
int Nbytes() const; // 返回tensor数据字节大小
int Numel() const; // 返回tensor元素个数
// Debug函数打印tensor的信息包含mean、max、min等
void PrintInfo(const std::string& prefix = "TensorInfo");
};
```
FDTensor是前后处理与`Runtime`进行对接的数据结构,大多情况下建议通过`SetExternalData`来共享用户传入的数据,减小内存拷贝带来的开销。
## Runtime 多后端推理引擎
### RuntimeOption 引擎配置
```
struct RuntimeOption {
// 模型文件和权重文件
std::string model_file;
std::string params_file;
// 模型格式当前可支持Frontend::PADDLE / Frontend::ONNX
Frontend model_format = Frontend::PADDLE;
Backend backend = Backend::ORT:
// CPU上运行时的线程数
int cpu_thread_num = 8;
// 推理硬件当前支持Device::CPU / Device::GPU
// 在CPU/GPU上需与backend进行搭配选择
Device device;
// Backend::ORT的参数
int ort_graph_opt_level;
int ort_inter_op_num_threads;
int ort_execution_mode;
// Backend::TRT的参数
std::map<std::string, std::vector<int32_t>> trt_fixed_shape;
std::map<std::string, std::vector<int32_t>> trt_max_shape;
std::map<std::string, std::vector<int32_t>> trt_min_shape;
std::map<std::string, std::vector<int32_t>> trt_opt_shape;
std::string trt_serialize_file = "";
bool trt_enable_fp16 = false;
bool trt_enable_int8 = false;
size_t trt_max_batch_size = 32;
};
```
### Runtime 引擎
```
struct Runtime {
// 加载模型,引擎初始化
bool Init(const RuntimeOption& _option);
// 进行推理
// 其中输入须正确配置tensor中的name
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs);
int NumInputs(); // 输入个数
int NumOutputs(); // 输出个数
TensorInfo GetInputInfo(int index) // 获取输入信息包括shape, dtype, name
TensorInfo GetOutputInfo(int index) // 获取输出信息包括shape, dtype, name
RuntimeOption option; // 引擎的配置信息
};
```
## Runtime使用示例
### C++
```
#include "fastdeploy/fastdeploy_runtime.h"
int main() {
auto option = fastdeploy::RuntimeOption();
option.model_file = "resnet50/inference.pdmodel";
option.params_file = "resnet50/inference.pdiparams";
auto runtime = fastdeploy::Runtime();
assert(runtime.Init(option));
// 需准备好输入tensor
std::vector<FDTensor> inputs;
std::vector<FDTensor> outputs;
assert(runtime.Infer(tensors, &outputs));
// 输出tensor的debug信息查看
outputs[0].PrintInfo();
}
```
### Python
```
import fastdeploy as fd
import numpy as np
option = fd.RuntimeOption();
option.model_file = "resnet50/inference.pdmodel"
option.params_file = "resnet50/inference.pdiparams";
runtime = fd.Runtime(option)
result = runtime.infer({"image": np.random.rand(1, 3, 224, 224)});
```

View File

@@ -1,74 +0,0 @@
# Vision
Vision是FastDeploy中的视觉模型模块包含`processors``utils`两个公共模块,以及模型模块。
## processors 图像处理模块
`processors`提供了常见的图像处理操作并为各操作实现不同的后端如当前支持的CPU以及GPU两种处理方式在模型中预算中开发者调用`processors`提供的API即可快速在不同的处理后端进行切换。
默认在CPU上进行处理
```
namespace vis = fastdeploy::vision;
im = cv2.imread("test.jpg");
vis::Mat mat(im);
assert(vis::Resize::Run(&mat, 224, 224));
assert(vis::Normalize::Run(&mat, {0.5, 0.5, 0.5}, {0.5, 0.5, 0.5}));
assert(vis::HWC2CHW::Run(&mat));
```
切换为CUDA GPU进行处理
```
namespace vis = fastdeploy::vision;
vis::Processor::default_lib = vis::ProcessorLib::OPENCV_CUDA;
im = cv2.imread("test.jpg");
vis::Mat mat(im);
assert(vis::Resize::Run(&mat, 224, 224));
assert(vis::Normalize::Run(&mat, {0.5, 0.5, 0.5}, {0.5, 0.5, 0.5}));
assert(vis::HWC2CHW::Run(&mat));
```
在处理过程中,通过`fastdeploy::vision::Mat`作为传递的数据结构
```
struct Mat {
Mat(cv::Mat); // 通过`cv::Mat`进行构造
FDDataType Type(); // 数值类型
int Channels(); // 通道数
int Width(); // 宽
int Height(); // 高
// 获取图像如Mat在GPU上则会拷贝到CPU上再返回
cv::Mat GetCpuMat();
// 获取图像如Mat在CPU上则会拷贝到GPU上再返回
cv::cuda::GpuMat GetGpuMat();
void ShareWithTensor(FDTensor* tensor); // 构造一个FDTensor并共享内存
bool CopyToTensor(FDTensor* tensor); // 构造一个CPU上的FDTensor并将数据拷贝过去
Layout layout; // 数据排布支持Layout::HWC / Layout::CHW
Device device; // 数据存放设备支持Device::CPU / Device::GPU
};
```
## utilities模块 工具模块
提供一些常见的函数,如分类模型常用的`TopK`选择,检测模型的`NMS`操作。同样后面可以考虑将后处理的实现也有不同后端
## visualize 可视化模块
提供一些可视化函数如检测、分割、OCR都需要这种函数来看可视化的效果
## 模型模块
这个是`Vision`中最重要的模块,所有的模块均通过`域名` + `模型名`来划分,如
- vision::ppdet::YOLOv3 // PaddleDetection的YOLOv3模型
- vision::ppdet::RCNN // PaddleDetection的RCNN类模型
- vision::ultralytics::YOLOv5 // https://github.com/ultralytics/yolov5 YOLOv5模型
模型的增加参考[模型开发](models.md)

View File

@@ -1,57 +0,0 @@
# FastDeploy模型
目前支持的模型如下
- [fastdeploy.vision.ppcls.Model](vision/ppcls.md) PaddleClas里的所有分类模型
- [fastdeploy.vision.ultralytics/YOLOv5](vision/ultralytics.md) [ultralytics/yolov5](https://github.com/ultralytics/yolov5)模型
具体模型使用方式可参考各模型文档API和示例说明。 各模型在运行时均有默认的Runtime配置本文档说明如何修改模型的后端配置其中如下代码为跑YOLOv5的模型Python示例代码
```
import fastdeploy as fd
model = fd.vision.ulttralytics.YOLOv5("yolov5s.onnx")
import cv2
im = cv2.imread('bus.jpg')
result = model.predict(im)
print(model.runtime_option)
```
通过`print(model.runtime_option)`可以看到如下信息
```
RuntimeOption(
backend : Backend.ORT # 当前推理后端为ONNXRuntime
cpu_thread_num : 8 # 推理时CPU线程数设置仅当模型在CPU上推理时有效
device : Device.GPU # 当前推理设备为GPU
device_id : 0 # 当前推理设备id为0
model_file : yolov5s.onnx # 模型文件路径
model_format : Frontend.ONNX # 模型格式当前为ONNX格式
ort_execution_mode : -1 # ONNXRuntime后端的配置参数-1表示默认
ort_graph_opt_level : -1 # ONNXRuntime后端的配置参数, -1表示默认
ort_inter_op_num_threads : -1 # ONNXRuntime后端的配置参数-1表示默认
params_file : # 参数文件ONNX模型无此文件
trt_enable_fp16 : False # TensorRT参数
trt_enable_int8 : False # TensorRT参数
trt_fixed_shape : {} # TensorRT参数
trt_max_batch_size : 32 # TensorRT参数
trt_max_shape : {} # TensorRT参数
trt_max_workspace_size : 1073741824 # TensorRT参数
trt_min_shape : {} # TensorRT参数
trt_opt_shape : {} # TensorRT参数
trt_serialize_file : # TensorRT参数
)
```
会注意到参数名以`ort`开头的均为ONNXRuntime后端专有的参数`trt`的则为TensorRT后端专有的参数。各后端与参数的配置可参考[RuntimeOption](runtime_option.md)说明。
## 切换模型推理方式
一般而言用户只需关注推理是在哪种Device下即可。 当然有更进一步需求可以再为Device选择不同的Backend但配置时注意Device与Backend的搭配。 如Backend::TRT只支持Device为GPU, 而Backend::ORT则同时支持CPU和GPU
```
import fastdeploy as fd
option = fd.RuntimeOption()
option.device = fd.Device.CPU
option.cpu_thread_num = 12
model = fd.vision.ulttralytics.YOLOv5("yolov5s.onnx", option)
print(model.runtime_option)
```

View File

@@ -1,104 +0,0 @@
# PaddleClas分类模型推理
PaddleClas模型导出参考[PaddleClas](https://github.com/PaddlePaddle/PaddleClas.git)
## Python API说明
### Model类
```
fastdeploy.vision.ppcls.Model(model_file, params_file, config_file, runtime_option=None, model_format=fastdeploy.Frontend.PADDLE)
```
**参数**
> * **model_file**(str): 模型文件如resnet50/inference.pdmodel
> * **params_file**(str): 参数文件如resnet50/inference.pdiparams
> * **config_file**(str): 配置文件来源于PaddleClas提供的推理配置文件如[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/deploy/configs/inference_cls.yaml)
> * **runtime_option**(fd.RuntimeOption): 后端推理的配置, 默认为None即采用默认配置
> * **model_format**(fd.Frontend): 模型格式说明PaddleClas的模型格式均为Frontend.PADDLE
#### predict接口
```
Model.predict(image_data, topk=1)
```
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据, 注意需为HWCRGB格式
> > * **topk**(int): 取前top的分类
> **返回结果**
>
> > * **result**(ClassifyResult):结构体包含`label_ids`和`scores`两个list成员变量表示类别和各类别对应的置信度
### 示例
> ```
> import fastdeploy.vision as vis
> import cv2
> model = vis.ppcls.Model("resnet50/inference.pdmodel", "resnet50/inference.pdiparams", "resnet50/inference_cls.yaml")
> im = cv2.imread("test.jpeg")
> result = model.predict(im, topk=5)
> print(result.label_ids[0], result.scores[0])
> ```
## C++ API说明
需添加头文件`#include "fastdeploy/vision.h"`
### Model类
```
fastdeploy::vision::ppcls::Model(
const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const Frontend& model_format = Frontend::PADDLE)
```
**参数**
> * **model_file**: 模型文件如resnet50/inference.pdmodel
> * **params_file**: 参数文件如resnet50/inference.pdiparams
> * **config_file**: 配置文件来源于PaddleClas提供的推理配置文件如[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/deploy/configs/inference_cls.yaml)
> * **runtime_option**: 后端推理的配置, 不设置的情况下,采用默认配置
> * **model_format**: 模型格式说明PaddleClas的模型格式均为Frontend.PADDLE
#### Predict接口
```
bool Model::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
```
> **参数**
> > * **im**: 输入图像数据须为HWCRGB格式(注意传入的im在预处理过程中会被修改)
> > * **result**: 分类结果
> > * **topk**: 取分类结果前topk
> **返回结果**
> > true或false表示预测成功与否
### 示例
> ```
> #include "fastdeploy/vision.h"
>
> int main() {
> typedef vis = fastdeploy::vision;
> auto model = vis::ppcls::Model("resnet50/inference.pdmodel", "resnet50/inference.pdiparams", "resnet50/inference_cls.yaml");
>
> if (!model.Initialized()) {
> std::cerr << "Initialize failed." << std::endl;
> return -1;
> }
>
> cv::Mat im = cv::imread("test.jpeg");
>
> vis::ClassifyResult res;
> if (!model.Predict(&im, &res, 5)) {
> std::cerr << "Prediction failed." << std::endl;
> return -1;
> }
>
> std::cout << res.label_ids[0] << " " << res.scores[0] << std::endl;
> return 0;
> }
```