mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Other] [Part2] Upgrade runtime module (#1080)
[Other] Upgrade runtime module
This commit is contained in:
323
fastdeploy/runtime/backends/lite/lite_backend.cc
Normal file
323
fastdeploy/runtime/backends/lite/lite_backend.cc
Normal file
@@ -0,0 +1,323 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/runtime/backends/lite/lite_backend.h"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
// Convert data type from paddle lite to fastdeploy
|
||||
FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype) {
|
||||
if (dtype == paddle::lite_api::PrecisionType::kFloat) {
|
||||
return FDDataType::FP32;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kInt8) {
|
||||
return FDDataType::INT8;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kInt32) {
|
||||
return FDDataType::INT32;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kInt64) {
|
||||
return FDDataType::INT64;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kInt16) {
|
||||
return FDDataType::INT16;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kUInt8) {
|
||||
return FDDataType::UINT8;
|
||||
} else if (dtype == paddle::lite_api::PrecisionType::kFP64) {
|
||||
return FDDataType::FP64;
|
||||
}
|
||||
FDASSERT(false, "Unexpected data type of %d.", dtype);
|
||||
return FDDataType::FP32;
|
||||
}
|
||||
|
||||
void LiteBackend::BuildOption(const LiteBackendOption& option) {
|
||||
option_ = option;
|
||||
std::vector<paddle::lite_api::Place> valid_places;
|
||||
if (option_.enable_int8) {
|
||||
if (option_.enable_kunlunxin) {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kInt8)});
|
||||
} else {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
|
||||
}
|
||||
FDINFO << "Lite::Backend enable_int8 option is ON ! Lite::Backend will "
|
||||
<< "inference with int8 precision!" << std::endl;
|
||||
}
|
||||
if (option_.enable_fp16) {
|
||||
if (option_.enable_kunlunxin) {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kFP16)});
|
||||
} else {
|
||||
paddle::lite_api::MobileConfig check_fp16_config;
|
||||
// Determine whether the device supports the FP16
|
||||
// instruction set (or whether it is an arm device
|
||||
// of the armv8.2 architecture)
|
||||
supported_fp16_ = check_fp16_config.check_fp16_valid();
|
||||
if (supported_fp16_) {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFP16)});
|
||||
FDINFO << "The device supports FP16, Lite::Backend will inference with "
|
||||
"FP16 precision."
|
||||
<< std::endl;
|
||||
} else {
|
||||
FDWARNING << "The device doesn't support FP16, will fallback to FP32.";
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!option_.nnadapter_subgraph_partition_config_path.empty()) {
|
||||
std::vector<char> nnadapter_subgraph_partition_config_buffer;
|
||||
if (ReadFile(option_.nnadapter_subgraph_partition_config_path,
|
||||
&nnadapter_subgraph_partition_config_buffer, false)) {
|
||||
if (!nnadapter_subgraph_partition_config_buffer.empty()) {
|
||||
std::string nnadapter_subgraph_partition_config_string(
|
||||
nnadapter_subgraph_partition_config_buffer.data(),
|
||||
nnadapter_subgraph_partition_config_buffer.size());
|
||||
config_.set_nnadapter_subgraph_partition_config_buffer(
|
||||
nnadapter_subgraph_partition_config_string);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (option_.enable_timvx) {
|
||||
config_.set_nnadapter_device_names({"verisilicon_timvx"});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kInt8)});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kFloat)});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
|
||||
}
|
||||
|
||||
if (option_.enable_ascend) {
|
||||
if (option_.nnadapter_device_names.empty()) {
|
||||
config_.set_nnadapter_device_names({"huawei_ascend_npu"});
|
||||
} else {
|
||||
config_.set_nnadapter_device_names(option_.nnadapter_device_names);
|
||||
}
|
||||
|
||||
if (!option_.nnadapter_context_properties.empty()) {
|
||||
config_.set_nnadapter_context_properties(
|
||||
option_.nnadapter_context_properties);
|
||||
}
|
||||
|
||||
if (!option_.nnadapter_model_cache_dir.empty()) {
|
||||
config_.set_nnadapter_model_cache_dir(option_.nnadapter_model_cache_dir);
|
||||
}
|
||||
|
||||
if (!option_.nnadapter_mixed_precision_quantization_config_path.empty()) {
|
||||
config_.set_nnadapter_mixed_precision_quantization_config_path(
|
||||
option_.nnadapter_mixed_precision_quantization_config_path);
|
||||
}
|
||||
|
||||
if (!option_.nnadapter_subgraph_partition_config_path.empty()) {
|
||||
config_.set_nnadapter_subgraph_partition_config_path(
|
||||
option_.nnadapter_subgraph_partition_config_path);
|
||||
}
|
||||
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kInt8)});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kFloat)});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
|
||||
}
|
||||
|
||||
if (option_.enable_kunlunxin) {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kFloat)});
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kX86), PRECISION(kFloat)});
|
||||
config_.set_xpu_dev_per_thread(option_.device_id);
|
||||
config_.set_xpu_workspace_l3_size_per_thread(
|
||||
option_.kunlunxin_l3_workspace_size);
|
||||
config_.set_xpu_l3_cache_method(option_.kunlunxin_l3_workspace_size,
|
||||
option_.kunlunxin_locked);
|
||||
config_.set_xpu_conv_autotune(option_.kunlunxin_autotune,
|
||||
option_.kunlunxin_autotune_file);
|
||||
config_.set_xpu_multi_encoder_method(option_.kunlunxin_precision,
|
||||
option_.kunlunxin_adaptive_seqlen);
|
||||
if (option_.kunlunxin_enable_multi_stream) {
|
||||
config_.enable_xpu_multi_stream();
|
||||
}
|
||||
} else {
|
||||
valid_places.push_back(
|
||||
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFloat)});
|
||||
}
|
||||
config_.set_valid_places(valid_places);
|
||||
if (option_.threads > 0) {
|
||||
config_.set_threads(option_.threads);
|
||||
}
|
||||
if (option_.power_mode > 0) {
|
||||
config_.set_power_mode(
|
||||
static_cast<paddle::lite_api::PowerMode>(option_.power_mode));
|
||||
}
|
||||
}
|
||||
|
||||
bool LiteBackend::ReadFile(const std::string& filename,
|
||||
std::vector<char>* contents, const bool binary) {
|
||||
FILE* fp = fopen(filename.c_str(), binary ? "rb" : "r");
|
||||
if (!fp) {
|
||||
FDERROR << "Cannot open file " << filename << "." << std::endl;
|
||||
return false;
|
||||
}
|
||||
fseek(fp, 0, SEEK_END);
|
||||
size_t size = ftell(fp);
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
contents->clear();
|
||||
contents->resize(size);
|
||||
size_t offset = 0;
|
||||
char* ptr = reinterpret_cast<char*>(&(contents->at(0)));
|
||||
while (offset < size) {
|
||||
size_t already_read = fread(ptr, 1, size - offset, fp);
|
||||
offset += already_read;
|
||||
ptr += already_read;
|
||||
}
|
||||
fclose(fp);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LiteBackend::InitFromPaddle(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const LiteBackendOption& option) {
|
||||
if (initialized_) {
|
||||
FDERROR << "LiteBackend is already initialized, cannot initialize again."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
config_.set_model_file(model_file);
|
||||
config_.set_param_file(params_file);
|
||||
BuildOption(option);
|
||||
predictor_ =
|
||||
paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::CxxConfig>(
|
||||
config_);
|
||||
if (option_.optimized_model_dir != "") {
|
||||
FDINFO << "Optimzed model dir is not empty, will save optimized model to: "
|
||||
<< option_.optimized_model_dir << std::endl;
|
||||
predictor_->SaveOptimizedModel(
|
||||
option_.optimized_model_dir,
|
||||
paddle::lite_api::LiteModelType::kNaiveBuffer);
|
||||
}
|
||||
|
||||
inputs_desc_.clear();
|
||||
outputs_desc_.clear();
|
||||
inputs_order_.clear();
|
||||
std::vector<std::string> input_names = predictor_->GetInputNames();
|
||||
std::vector<std::string> output_names = predictor_->GetOutputNames();
|
||||
for (size_t i = 0; i < input_names.size(); ++i) {
|
||||
inputs_order_[input_names[i]] = i;
|
||||
TensorInfo info;
|
||||
auto tensor = predictor_->GetInput(i);
|
||||
auto shape = tensor->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.name = input_names[i];
|
||||
info.dtype = LiteDataTypeToFD(tensor->precision());
|
||||
inputs_desc_.emplace_back(info);
|
||||
}
|
||||
for (size_t i = 0; i < output_names.size(); ++i) {
|
||||
TensorInfo info;
|
||||
auto tensor = predictor_->GetOutput(i);
|
||||
auto shape = tensor->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.name = output_names[i];
|
||||
if (!option_.enable_kunlunxin) {
|
||||
info.dtype = LiteDataTypeToFD(tensor->precision());
|
||||
}
|
||||
outputs_desc_.emplace_back(info);
|
||||
}
|
||||
|
||||
initialized_ = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
TensorInfo LiteBackend::GetInputInfo(int index) {
|
||||
FDASSERT(index < NumInputs(),
|
||||
"The index: %d should less than the number of inputs: %d.", index,
|
||||
NumInputs());
|
||||
return inputs_desc_[index];
|
||||
}
|
||||
|
||||
std::vector<TensorInfo> LiteBackend::GetInputInfos() { return inputs_desc_; }
|
||||
|
||||
TensorInfo LiteBackend::GetOutputInfo(int index) {
|
||||
FDASSERT(index < NumOutputs(),
|
||||
"The index: %d should less than the number of outputs %d.", index,
|
||||
NumOutputs());
|
||||
return outputs_desc_[index];
|
||||
}
|
||||
|
||||
std::vector<TensorInfo> LiteBackend::GetOutputInfos() { return outputs_desc_; }
|
||||
|
||||
bool LiteBackend::Infer(std::vector<FDTensor>& inputs,
|
||||
std::vector<FDTensor>* outputs, bool copy_to_fd) {
|
||||
if (inputs.size() != inputs_desc_.size()) {
|
||||
FDERROR << "[LiteBackend] Size of inputs(" << inputs.size()
|
||||
<< ") should keep same with the inputs of this model("
|
||||
<< inputs_desc_.size() << ")." << std::endl;
|
||||
return false;
|
||||
}
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
auto iter = inputs_order_.find(inputs[i].name);
|
||||
if (iter == inputs_order_.end()) {
|
||||
FDERROR << "Cannot find input with name:" << inputs[i].name
|
||||
<< " in loaded model." << std::endl;
|
||||
return false;
|
||||
}
|
||||
auto tensor = predictor_->GetInput(iter->second);
|
||||
// Adjust dims only, allocate lazy.
|
||||
tensor->Resize(inputs[i].shape);
|
||||
if (inputs[i].dtype == FDDataType::FP32) {
|
||||
tensor->CopyFromCpu<float, paddle::lite_api::TargetType::kHost>(
|
||||
reinterpret_cast<const float*>(
|
||||
const_cast<void*>(inputs[i].CpuData())));
|
||||
} else if (inputs[i].dtype == FDDataType::INT32) {
|
||||
tensor->CopyFromCpu<int, paddle::lite_api::TargetType::kHost>(
|
||||
reinterpret_cast<const int*>(const_cast<void*>(inputs[i].CpuData())));
|
||||
} else if (inputs[i].dtype == FDDataType::INT8) {
|
||||
tensor->CopyFromCpu<int8_t, paddle::lite_api::TargetType::kHost>(
|
||||
reinterpret_cast<const int8_t*>(
|
||||
const_cast<void*>(inputs[i].CpuData())));
|
||||
} else if (inputs[i].dtype == FDDataType::UINT8) {
|
||||
tensor->CopyFromCpu<uint8_t, paddle::lite_api::TargetType::kHost>(
|
||||
reinterpret_cast<const uint8_t*>(
|
||||
const_cast<void*>(inputs[i].CpuData())));
|
||||
} else if (inputs[i].dtype == FDDataType::INT64) {
|
||||
#if (defined(__aarch64__) || defined(__x86_64__) || defined(_M_X64) || \
|
||||
defined(_M_ARM64))
|
||||
tensor->CopyFromCpu<int64_t, paddle::lite_api::TargetType::kHost>(
|
||||
reinterpret_cast<const int64_t*>(
|
||||
const_cast<void*>(inputs[i].CpuData())));
|
||||
#else
|
||||
FDASSERT(false, "FDDataType::INT64 is not support for x86/armv7 now!");
|
||||
#endif
|
||||
} else {
|
||||
FDASSERT(false, "Unexpected data type of %d.", inputs[i].dtype);
|
||||
}
|
||||
}
|
||||
|
||||
predictor_->Run();
|
||||
|
||||
outputs->resize(outputs_desc_.size());
|
||||
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
||||
auto tensor = predictor_->GetOutput(i);
|
||||
if (outputs_desc_[i].dtype != LiteDataTypeToFD(tensor->precision())) {
|
||||
outputs_desc_[i].dtype = LiteDataTypeToFD(tensor->precision());
|
||||
}
|
||||
(*outputs)[i].Resize(tensor->shape(), outputs_desc_[i].dtype,
|
||||
outputs_desc_[i].name);
|
||||
memcpy((*outputs)[i].MutableData(), tensor->data<void>(),
|
||||
(*outputs)[i].Nbytes());
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user