mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-25 01:20:43 +08:00
[Feature] add tool parser (#3518)
* [Feature] Pass through the `chat_template_kwargs` to the data processing module (#3421)
* fix chat_template_args
* fix args
* add offline
* add offline
* fix
* fix
* fix default enable_thinking value
* fix default enable_thinking value
* modify condition
* Revert "modify condition"
This reverts commit 26430bdeb1.
* fix unit test
* add Tool Parser (#3272)
* add tool-parser
* add tool-parser
* add tool parser
* add tool parser
* fix
* add offline
* add offline
* fix
* parsers:tool&reasoning
* 修改tool parser名称·
* update
* fix reasoning-parser
* add requirements
* fix finish reason
* fix
* fix reasoning-parser
* fix
* fix
* fix
* fix
* fix
---------
Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
* [Feature] add tool parser (#3483)
* add tool parser
* add x1 enable_thinking
* restart ci
* fix vl reasoning parser
* modify call style
* modify call style
* add offline enablethinking
* fix completion
* fix
* fix unit test
* fix unit test
* fix unit test
* fix vl reasoning parser
* fix vl reasoning parser
* fix unit test
---------
Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
This commit is contained in:
162
fastdeploy/reasoning/ernie_x1_reasoning_parsers.py
Normal file
162
fastdeploy/reasoning/ernie_x1_reasoning_parsers.py
Normal file
@@ -0,0 +1,162 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
#
|
||||
from collections.abc import Sequence
|
||||
from typing import Tuple, Union
|
||||
|
||||
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
|
||||
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
|
||||
|
||||
#
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
@ReasoningParserManager.register_module("ernie_x1")
|
||||
class ErnieX1ReasoningParser(ReasoningParser):
|
||||
"""
|
||||
Reasoning parser for ernie_x1 model with stricter boundary checking.
|
||||
|
||||
This implementation follows the user's proposed approach:
|
||||
1. For thinking content: waits for \n then checks for </think> tag
|
||||
2. For response content: checks for <response> tag first, then waits for \n
|
||||
3. Handles newlines in content more precisely
|
||||
"""
|
||||
|
||||
def __init__(self, tokenizer):
|
||||
super().__init__(tokenizer)
|
||||
self.think_end_token = "</think>"
|
||||
self.response_start_token = "<response>"
|
||||
self.response_end_token = "</response>"
|
||||
self.tool_call_start_token = "<tool_call>"
|
||||
self.tool_call_end_token = "</tool_call>"
|
||||
|
||||
if not self.model_tokenizer:
|
||||
raise ValueError("The model tokenizer must be passed to the ReasoningParser constructor.")
|
||||
|
||||
self.think_end_token_id = self.vocab.get("</think>")
|
||||
if self.think_end_token_id is None:
|
||||
raise RuntimeError("Could not find think end token id in tokenizer vocabulary")
|
||||
self.tool_call_start_token_id = self.vocab.get("<tool_call>")
|
||||
|
||||
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
||||
return self.tool_call_start_token_id in input_ids
|
||||
|
||||
def extract_reasoning_content_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
) -> Union[DeltaMessage, None]:
|
||||
"""
|
||||
根据用户需求实现的流式解析方法:
|
||||
1. 初始内容都视为思考内容,返回delta_text,""
|
||||
2. 当遇到\n时检查后续是否是</think>
|
||||
3. 如果直接遇到</think>也结束思考
|
||||
4. 思考结束后检查是<response>还是<tool_call>
|
||||
5. 对于<response>内容,处理各种边界条件
|
||||
"""
|
||||
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
|
||||
return None
|
||||
# 思考阶段处理
|
||||
if not previous_text.endswith(self.think_end_token) and self.think_end_token not in previous_text:
|
||||
# 如果遇到\n,暂时不返回,等待下一个delta_text
|
||||
if delta_text == "\n":
|
||||
return None
|
||||
# 如果前一个是\n且当前是</think>,结束思考
|
||||
elif previous_text.endswith("\n") and delta_text.startswith(self.think_end_token):
|
||||
return None
|
||||
# 如果直接遇到</think>也结束思考
|
||||
elif delta_text.startswith(self.think_end_token):
|
||||
return None
|
||||
# 否则继续返回思考内容
|
||||
return DeltaMessage(reasoning_content=delta_text)
|
||||
|
||||
# 思考结束后检查是tool_call还是response
|
||||
remaining_text = previous_text + delta_text
|
||||
after_think = remaining_text[remaining_text.find(self.think_end_token) + len(self.think_end_token) :]
|
||||
after_think = after_think.lstrip("\n") # 跳过think后的换行
|
||||
|
||||
# 处理tool_call情况
|
||||
if after_think.startswith(self.tool_call_start_token):
|
||||
return None
|
||||
|
||||
# 处理response情况
|
||||
if after_think.startswith(self.response_start_token):
|
||||
# 遇到<response>标签时不立即返回
|
||||
if delta_text == self.response_start_token:
|
||||
return None
|
||||
# 遇到<response>后的换行符也不立即返回
|
||||
elif delta_text == "\n" and previous_text.endswith(self.response_start_token):
|
||||
return None
|
||||
# 处理回复内容中的换行符
|
||||
if delta_text == "\n":
|
||||
return None
|
||||
# 如果前一个是\n且当前是</response>,结束回复
|
||||
elif previous_text.endswith("\n") and delta_text == self.response_end_token:
|
||||
return None
|
||||
# 如果直接遇到</response>也结束回复
|
||||
elif delta_text == self.response_end_token:
|
||||
return None
|
||||
# 其他情况返回实际内容
|
||||
else:
|
||||
return DeltaMessage(content=delta_text)
|
||||
|
||||
# 默认情况不返回内容
|
||||
return None
|
||||
|
||||
def extract_reasoning_content(self, model_output: str, request: ChatCompletionRequest) -> Tuple[str, str]:
|
||||
"""
|
||||
Batch version of the enhanced parser.
|
||||
Modified to preserve newlines in both reasoning and response content,
|
||||
only removing the single newline before closing tags.
|
||||
"""
|
||||
reasoning_content = ""
|
||||
response_content = ""
|
||||
|
||||
think_end_pos = model_output.find(self.think_end_token)
|
||||
if think_end_pos != -1:
|
||||
# Extract thinking content - only remove the last newline before </think>
|
||||
reasoning_content = model_output[:think_end_pos]
|
||||
if think_end_pos > 0 and reasoning_content[-1] == "\n":
|
||||
reasoning_content = reasoning_content[:-1]
|
||||
|
||||
remaining = model_output[think_end_pos + len(self.think_end_token) :]
|
||||
|
||||
# Skip newlines after </think>
|
||||
remaining = remaining.lstrip("\n")
|
||||
|
||||
# Check for response or tool_call
|
||||
if remaining.startswith(self.response_start_token):
|
||||
response_pos = len(self.response_start_token)
|
||||
remaining = remaining[response_pos:].lstrip("\n")
|
||||
response_end_pos = remaining.find(self.response_end_token)
|
||||
if response_end_pos != -1:
|
||||
# Only strip the last newline before </response>, not all
|
||||
if response_end_pos > 0 and remaining[response_end_pos - 1] == "\n":
|
||||
response_content = remaining[: response_end_pos - 1]
|
||||
else:
|
||||
response_content = remaining[:response_end_pos]
|
||||
else:
|
||||
# If no </response> found, return the rest as response content
|
||||
response_content = remaining
|
||||
elif remaining.startswith(self.tool_call_start_token):
|
||||
pass # No response content
|
||||
else:
|
||||
# No thinking content found, return the whole input as reasoning
|
||||
reasoning_content = model_output
|
||||
response_content = ""
|
||||
return reasoning_content, response_content
|
||||
Reference in New Issue
Block a user