mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Modify documents (#110)
* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (#9) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * first commit for yolor * for merge * Develop (#11) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Yolor (#16) * Develop (#11) (#12) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Develop (#13) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (#14) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com> * add is_dynamic for YOLO series (#22) * first commit test photo * yolov7 doc * yolov7 doc * yolov7 doc * yolov7 doc * add yolov5 docs * modify yolov5 doc * first commit for retinaface * first commit for retinaface * firt commit for ultraface * firt commit for ultraface * firt commit for yolov5face * firt commit for modnet and arcface * firt commit for modnet and arcface * first commit for partial_fc * first commit for partial_fc * first commit for yolox * first commit for yolov6 * first commit for nano_det * first commit for scrfd * first commit for scrfd * first commit for retinaface * first commit for ultraface * first commit for yolov5face * first commit for yolox yolov6 nano * rm jpg * first commit for modnet and modify nano * yolor scaledyolov4 v5lite * first commit for insightface * first commit for insightface * first commit for insightface * docs * docs * docs * docs * docs * add print for detect and modify docs * docs * docs * docs * docs test for insightface * docs test for insightface again * docs test for insightface * modify all wrong expressions in docs * modify all wrong expressions in docs * modify all wrong expressions in docs * modify all wrong expressions in docs * modify docs expressions * fix expression of detection part * fix expression of detection part * fix expression of detection part Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
@@ -1,14 +1,20 @@
|
|||||||
人脸检测模型
|
# 目标检测模型
|
||||||
|
|
||||||
FastDeploy目前支持如下目标检测模型部署
|
FastDeploy目前支持如下目标检测模型部署
|
||||||
|
|
||||||
| 模型 | 说明 | 模型格式 | 版本 |
|
| 模型 | 说明 | 模型格式 | 版本 |
|
||||||
| :--- | :--- | :------- | :--- |
|
| :--- | :--- | :------- | :--- |
|
||||||
| [nanodet_plus](./nanodet_plus) | NanoDetPlus系列模型 | ONNX | Release/v1.0.0-alpha-1 |
|
| [PaddleDetection/PPYOLOE](./paddledetection) | PPYOLOE系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolov5](./yolov5) | YOLOv5系列模型 | ONNX | Release/v6.0 |
|
| [PaddleDetection/PicoDet](./paddledetection) | PicoDet系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolov5lite](./yolov5lite) | YOLOv5-Lite系列模型 | ONNX | Release/v1.4 |
|
| [PaddleDetection/YOLOX](./paddledetection) | Paddle版本的YOLOX系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolov6](./yolov6) | YOLOv6系列模型 | ONNX | Release/0.1.0 |
|
| [PaddleDetection/YOLOv3](./paddledetection) | YOLOv3系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolov7](./yolov7) | YOLOv7系列模型 | ONNX | Release/0.1 |
|
| [PaddleDetection/PPYOLO](./paddledetection) | PPYOLO系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolor](./yolor) | YOLOR系列模型 | ONNX | Release/weights |
|
| [PaddleDetection/FasterRCNN](./paddledetection) | FasterRCNN系列模型 | Paddle | [Release/2.4](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) |
|
||||||
| [yolox](./yolox) | YOLOX系列模型 | ONNX | Release/v0.1.1 |
|
| [WongKinYiu/YOLOv7](./yolov7) | YOLOv7、YOLOv7-X等系列模型 | ONNX | [Release/v0.1](https://github.com/WongKinYiu/yolov7/tree/v0.1) |
|
||||||
| [scaledyolov4](./scaledyolov4) | ScaledYOLOv4系列模型 | ONNX | CommitID:6768003 |
|
| [RangiLyu/NanoDetPlus](./nanodet_plus) | NanoDetPlus 系列模型 | ONNX | [Release/v1.0.0-alpha-1](https://github.com/RangiLyu/nanodet/tree/v1.0.0-alpha-1) |
|
||||||
|
| [ultralytics/YOLOv5](./yolov5) | YOLOv5 系列模型 | ONNX | [Release/v6.0](https://github.com/ultralytics/yolov5/tree/v6.0) |
|
||||||
|
| [ppogg/YOLOv5-Lite](./yolov5lite) | YOLOv5-Lite 系列模型 | ONNX | [Release/v1.4](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4) |
|
||||||
|
| [meituan/YOLOv6](./yolov6) | YOLOv6 系列模型 | ONNX | [Release/0.1.0](https://github.com/meituan/YOLOv6/releases/download/0.1.0) |
|
||||||
|
| [WongKinYiu/YOLOR](./yolor) | YOLOR 系列模型 | ONNX | [Release/weights](https://github.com/WongKinYiu/yolor/releases/tag/weights) |
|
||||||
|
| [Megvii-BaseDetection/YOLOX](./yolox) | YOLOX 系列模型 | ONNX | [Release/v0.1.1](https://github.com/Megvii-BaseDetection/YOLOX/tree/0.1.1rc0) |
|
||||||
|
| [WongKinYiu/ScaledYOLOv4](./scaledyolov4) | ScaledYOLOv4 系列模型 | ONNX | [CommitID: 6768003](https://github.com/WongKinYiu/ScaledYOLOv4/commit/676800364a3446900b9e8407bc880ea2127b3415) |
|
||||||
|
@@ -1,11 +1,10 @@
|
|||||||
# NanoDetPlus准备部署模型
|
# NanoDetPlus准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- NanoDetPlus部署实现来自[NanoDetPlus](https://github.com/RangiLyu/nanodet/tree/v1.0.0-alpha-1) 的代码,基于coco的[预训练模型](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)。
|
- NanoDetPlus部署实现来自[NanoDetPlus](https://github.com/RangiLyu/nanodet/tree/v1.0.0-alpha-1) 的代码,基于coco的[预训练模型](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)的*.onnx可直接进行部署;
|
- (1)[官方库](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)提供的*.onnx可直接进行部署;
|
||||||
- (2)自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)开发者自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
## 下载预训练ONNX模型
|
## 下载预训练ONNX模型
|
||||||
|
|
||||||
|
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
- ScaledYOLOv4部署实现来自[ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)的代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/ScaledYOLOv4)。
|
- ScaledYOLOv4部署实现来自[ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)的代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/ScaledYOLOv4)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/WongKinYiu/ScaledYOLOv4)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;*.onnx、*.trt和*.pose模型不支持部署;
|
- (1)[官方库](https://github.com/WongKinYiu/ScaledYOLOv4)提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)自己数据训练的ScaledYOLOv4模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)自己数据训练的ScaledYOLOv4模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
- YOLOR部署实现来自[YOLOR](https://github.com/WongKinYiu/yolor/releases/tag/weights)的代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/yolor/releases/tag/weights)。
|
- YOLOR部署实现来自[YOLOR](https://github.com/WongKinYiu/yolor/releases/tag/weights)的代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/yolor/releases/tag/weights)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/WongKinYiu/yolor/releases/tag/weights)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;*.onnx、*.trt和*.pose模型不支持部署;
|
- (1)[官方库](https://github.com/WongKinYiu/yolor/releases/tag/weights)提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)自己数据训练的YOLOR模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)自己数据训练的YOLOR模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,9 +1,7 @@
|
|||||||
# YOLOv5准备部署模型
|
# YOLOv5准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- YOLOv5 v6.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v6.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v6.0)
|
- YOLOv5 v6.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v6.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v6.0)
|
||||||
- (1)[预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v6.0)的*.onnx可直接进行部署;
|
- (1)[官方库](https://github.com/ultralytics/yolov5/releases/tag/v6.0)提供的*.onnx可直接进行部署;
|
||||||
- (2)开发者基于自己数据训练的YOLOv5 v6.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后后,完成部署。
|
- (2)开发者基于自己数据训练的YOLOv5 v6.0模型,可使用[YOLOv5](https://github.com/ultralytics/yolov5)中的`export.py`导出ONNX文件后后,完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
@@ -3,7 +3,7 @@
|
|||||||
- YOLOv5Lite部署实现来自[YOLOv5-Lite](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)
|
- YOLOv5Lite部署实现来自[YOLOv5-Lite](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)
|
||||||
代码,和[基于COCO的预训练模型](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)。
|
代码,和[基于COCO的预训练模型](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;*.onnx、*.trt和*.pose模型不支持部署;
|
- (1)[官方库](https://github.com/ppogg/YOLOv5-Lite/releases/tag/v1.4)提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)自己数据训练的YOLOv5Lite模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)自己数据训练的YOLOv5Lite模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,11 +1,10 @@
|
|||||||
# YOLOv6准备部署模型
|
# YOLOv6准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- YOLOv6 部署实现来自[YOLOv6](https://github.com/meituan/YOLOv6/releases/tag/0.1.0),和[基于coco的预训练模型](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)。
|
- YOLOv6 部署实现来自[YOLOv6](https://github.com/meituan/YOLOv6/releases/tag/0.1.0),和[基于coco的预训练模型](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)。
|
||||||
|
|
||||||
- (1)[基于coco的预训练模型](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)的*.onnx可直接进行部署;
|
- (1)[官方库](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)提供的*.onnx可直接进行部署;
|
||||||
- (2)自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)开发者自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@@ -2,8 +2,10 @@
|
|||||||
|
|
||||||
- YOLOv7部署实现来自[YOLOv7](https://github.com/WongKinYiu/yolov7/tree/v0.1)分支代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/yolov7/releases/tag/v0.1)。
|
- YOLOv7部署实现来自[YOLOv7](https://github.com/WongKinYiu/yolov7/tree/v0.1)分支代码,和[基于COCO的预训练模型](https://github.com/WongKinYiu/yolov7/releases/tag/v0.1)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/WongKinYiu/yolov7/releases/tag/v0.1)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;*.onnx、*.trt和*.pose模型不支持部署;
|
- (1)[官方库](https://github.com/WongKinYiu/yolov7/releases/tag/v0.1)提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;*.trt和*.pose模型不支持部署;
|
||||||
- (2)自己数据训练的YOLOv7 0.1模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
- (2)自己数据训练的YOLOv7模型,按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
@@ -1,11 +1,11 @@
|
|||||||
# YOLOX准备部署模型
|
# YOLOX准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- YOLOX部署实现来自[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/tree/0.1.1rc0),基于[coco的预训练模型](https://github.com/Megvii-BaseDetection/YOLOX/releases/tag/0.1.1rc0)。
|
- YOLOX部署实现来自[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/tree/0.1.1rc0),基于[coco的预训练模型](https://github.com/Megvii-BaseDetection/YOLOX/releases/tag/0.1.1rc0)。
|
||||||
|
|
||||||
- (1)[预训练模型](https://github.com/Megvii-BaseDetection/YOLOX/releases/tag/0.1.1rc0)中的*.pth通过导出ONNX模型操作后,可进行部署;*.onnx、*.trt和*.pose模型不支持部署;
|
- (1)[官方库](https://github.com/Megvii-BaseDetection/YOLOX/releases/tag/0.1.1rc0)提供中的*.pth通过导出ONNX模型操作后,可进行部署;
|
||||||
- (2)开发者基于自己数据训练的YOLOX v0.1.1模型,可按照导出ONNX模型后,完成部署。
|
- (2)开发者自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 下载预训练ONNX模型
|
## 下载预训练ONNX模型
|
||||||
|
@@ -4,7 +4,7 @@ FastDeploy目前支持如下人脸检测模型部署
|
|||||||
|
|
||||||
| 模型 | 说明 | 模型格式 | 版本 |
|
| 模型 | 说明 | 模型格式 | 版本 |
|
||||||
| :--- | :--- | :------- | :--- |
|
| :--- | :--- | :------- | :--- |
|
||||||
| [retinaface](./retinaface) | RetinaFace系列模型 | ONNX | CommitID:b984b4b |
|
| [biubug6/RetinaFace](./retinaface) | RetinaFace 系列模型 | ONNX | [CommitID:b984b4b](https://github.com/biubug6/Pytorch_Retinaface/commit/b984b4b) |
|
||||||
| [ultraface](./ultraface) | UltraFace系列模型 | ONNX |CommitID:dffdddd |
|
| [Linzaer/UltraFace](./ultraface) | UltraFace 系列模型 | ONNX |[CommitID:dffdddd](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/commit/dffdddd) |
|
||||||
| [yolov5face](./yolov5face) | YOLOv5Face系列模型 | ONNX | CommitID:4fd1ead |
|
| [deepcam-cn/YOLOv5Face](./yolov5face) | YOLOv5Face 系列模型 | ONNX | [CommitID:4fd1ead](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead) |
|
||||||
| [scrfd](./scrfd) | SCRFD系列模型 | ONNX | CommitID:17cdeab |
|
| [deepinsight/SCRFD](./scrfd) | SCRFD 系列模型 | ONNX | [CommitID:17cdeab](https://github.com/deepinsight/insightface/tree/17cdeab12a35efcebc2660453a8cbeae96e20950) |
|
||||||
|
@@ -1,10 +1,9 @@
|
|||||||
# RetinaFace准备部署模型
|
# RetinaFace准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface/commit/b984b4b)
|
- [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface/commit/b984b4b)
|
||||||
- (1)[链接中](https://github.com/biubug6/Pytorch_Retinaface/commit/b984b4b)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
- (1)[官方库](https://github.com/biubug6/Pytorch_Retinaface/)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)自己数据训练的RetinaFace CommitID:b984b4b模型,可按照[导出ONNX模型](#导出ONNX模型)后,完成部署。
|
- (2)自己数据训练的RetinaFace模型,可按照[导出ONNX模型](#导出ONNX模型)后,完成部署。
|
||||||
|
|
||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
|
||||||
|
@@ -1,10 +1,10 @@
|
|||||||
# SCRFD准备部署模型
|
# SCRFD准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [SCRFD](https://github.com/deepinsight/insightface/tree/17cdeab12a35efcebc2660453a8cbeae96e20950)
|
- [SCRFD](https://github.com/deepinsight/insightface/tree/17cdeab12a35efcebc2660453a8cbeae96e20950)
|
||||||
- (1)[链接中](https://github.com/deepinsight/insightface/tree/17cdeab12a35efcebc2660453a8cbeae96e20950)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
- (1)[官方库](https://github.com/deepinsight/insightface/)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)开发者基于自己数据训练的SCRFD CID:17cdeab模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
- (2)开发者基于自己数据训练的SCRFD模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
||||||
|
|
||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
|
||||||
|
@@ -1,9 +1,10 @@
|
|||||||
# UltraFace准备部署模型
|
# UltraFace准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [UltraFace](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/commit/dffdddd)
|
- [UltraFace](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/commit/dffdddd)
|
||||||
- (1)[链接中](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/commit/dffdddd)的*.onnx可下载, 也可以通过下面模型链接下载并进行部署
|
- (1)[官方库](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/)中提供的*.onnx可下载, 也可以通过下面模型链接下载并进行部署
|
||||||
|
- (2)开发者自己训练的模型,导出ONNX模型后,参考[详细部署文档](#详细部署文档)完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 下载预训练ONNX模型
|
## 下载预训练ONNX模型
|
||||||
|
@@ -1,9 +1,7 @@
|
|||||||
# YOLOv5Face准备部署模型
|
# YOLOv5Face准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [YOLOv5Face](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead)
|
- [YOLOv5Face](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead)
|
||||||
- (1)[链接中](https://github.com/deepcam-cn/yolov5-face/commit/4fd1ead)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
- (1)[官方库](https://github.com/deepcam-cn/yolov5-face/)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)开发者基于自己数据训练的YOLOv5Face模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
- (2)开发者基于自己数据训练的YOLOv5Face模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
@@ -1,10 +1,11 @@
|
|||||||
人脸检测模型
|
# 人脸识别模型
|
||||||
|
|
||||||
|
|
||||||
FastDeploy目前支持如下人脸识别模型部署
|
FastDeploy目前支持如下人脸识别模型部署
|
||||||
|
|
||||||
| 模型 | 说明 | 模型格式 | 版本 |
|
| 模型 | 说明 | 模型格式 | 版本 |
|
||||||
| :--- | :--- | :------- | :--- |
|
| :--- | :--- | :------- | :--- |
|
||||||
| [arcface](./insightface) | ArcFace系列模型 | ONNX | CommitID:babb9a5 |
|
| [deepinsight/ArcFace](./insightface) | ArcFace 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
| [cosface](./insightface) | CosFace系列模型 | ONNX | CommitID:babb9a5 |
|
| [deepinsight/CosFace](./insightface) | CosFace 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
| [partial_fc](./insightface) | PartialFC系列模型 | ONNX | CommitID:babb9a5 |
|
| [deepinsight/PartialFC](./insightface) | PartialFC 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
| [vpl](./insightface) | VPL系列模型 | ONNX | CommitID:babb9a5 |
|
| [deepinsight/VPL](./insightface) | VPL 系列模型 | ONNX | [CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) |
|
||||||
|
@@ -1,9 +1,7 @@
|
|||||||
# InsightFace准备部署模型
|
# InsightFace准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [InsightFace](https://github.com/deepinsight/insightface/commit/babb9a5)
|
- [InsightFace](https://github.com/deepinsight/insightface/commit/babb9a5)
|
||||||
- (1)[链接中](https://github.com/deepinsight/insightface/commit/babb9a5)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
- (1)[官方库](https://github.com/deepinsight/insightface/)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)开发者基于自己数据训练的InsightFace模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
- (2)开发者基于自己数据训练的InsightFace模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
||||||
|
|
||||||
|
|
||||||
|
@@ -18,7 +18,7 @@ def parse_arguments():
|
|||||||
import ast
|
import ast
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model", required=True, help="Path of scrfd onnx model.")
|
"--model", required=True, help="Path of insgihtface onnx model.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--face", required=True, help="Path of test face image file.")
|
"--face", required=True, help="Path of test face image file.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@@ -18,7 +18,7 @@ def parse_arguments():
|
|||||||
import ast
|
import ast
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model", required=True, help="Path of scrfd onnx model.")
|
"--model", required=True, help="Path of insightface onnx model.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--face", required=True, help="Path of test face image file.")
|
"--face", required=True, help="Path of test face image file.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@@ -18,7 +18,7 @@ def parse_arguments():
|
|||||||
import ast
|
import ast
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model", required=True, help="Path of scrfd onnx model.")
|
"--model", required=True, help="Path of insightface onnx model.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--face", required=True, help="Path of test face image file.")
|
"--face", required=True, help="Path of test face image file.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@@ -18,7 +18,7 @@ def parse_arguments():
|
|||||||
import ast
|
import ast
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model", required=True, help="Path of scrfd onnx model.")
|
"--model", required=True, help="Path of insightface onnx model.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--face", required=True, help="Path of test face image file.")
|
"--face", required=True, help="Path of test face image file.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@@ -1,7 +1,7 @@
|
|||||||
人脸检测模型
|
# 抠图模型
|
||||||
|
|
||||||
FastDeploy目前支持如下人脸识别模型部署
|
FastDeploy目前支持如下抠图模型部署
|
||||||
|
|
||||||
| 模型 | 说明 | 模型格式 | 版本 |
|
| 模型 | 说明 | 模型格式 | 版本 |
|
||||||
| :--- | :--- | :------- | :--- |
|
| :--- | :--- | :------- | :--- |
|
||||||
| [modnet](./modnet) | MODNet系列模型 | ONNX | CommitID:28165a4 |
|
| [ZHKKKe/MODNet](./modnet) | MODNet 系列模型 | ONNX | [CommitID:28165a4](https://github.com/ZHKKKe/MODNet/commit/28165a4) |
|
||||||
|
@@ -1,10 +1,8 @@
|
|||||||
# MODNet准备部署模型
|
# MODNet准备部署模型
|
||||||
|
|
||||||
## 模型版本说明
|
|
||||||
|
|
||||||
- [MODNet](https://github.com/ZHKKKe/MODNet/commit/28165a4)
|
- [MODNet](https://github.com/ZHKKKe/MODNet/commit/28165a4)
|
||||||
- (1)[链接中](https://github.com/ZHKKKe/MODNet/commit/28165a4)的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
- (1)[官方库](https://github.com/ZHKKKe/MODNet/)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
|
||||||
- (2)开发者基于自己数据训练的MODNet CommitID:b984b4b模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
- (2)开发者基于自己数据训练的MODNet模型,可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
|
||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user