[Benchmark] Add macros for benchmark (#1301)

* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
WJJ1995
2023-02-13 16:12:54 +08:00
committed by GitHub
parent e63f5f369e
commit 47b1d27fbb
5 changed files with 190 additions and 252 deletions

View File

@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/vision.h"
#include "flags.h"
#include "macros.h"
#include "option.h"
#ifdef WIN32
const char sep = '\\';
@@ -22,104 +22,24 @@ const char sep = '\\';
const char sep = '/';
#endif
bool RunModel(std::string model_dir, std::string image_file, size_t warmup,
size_t repeats, size_t dump_period, std::string cpu_mem_file_name,
std::string gpu_mem_file_name) {
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto im = cv::imread(FLAGS_image);
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return false;
}
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
if (FLAGS_profile_mode == "runtime") {
option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup);
}
auto model = fastdeploy::vision::detection::PaddleYOLOv8(
auto model_file = FLAGS_model + sep + "model.pdmodel";
auto params_file = FLAGS_model + sep + "model.pdiparams";
auto config_file = FLAGS_model + sep + "infer_cfg.yml";
auto model_ppyolov8 = fastdeploy::vision::detection::PaddleYOLOv8(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return false;
}
auto im = cv::imread(image_file);
// For Runtime
if (FLAGS_profile_mode == "runtime") {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
double profile_time = model.GetProfileTime() * 1000;
std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
} else {
// For End2End
// Step1: warm up for warmup times
std::cout << "Warmup " << warmup << " times..." << std::endl;
for (int i = 0; i < warmup; i++) {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
}
std::vector<float> end2end_statis;
// Step2: repeat for repeats times
std::cout << "Counting time..." << std::endl;
fastdeploy::TimeCounter tc;
fastdeploy::vision::DetectionResult res;
for (int i = 0; i < repeats; i++) {
if (FLAGS_collect_memory_info && i % dump_period == 0) {
fastdeploy::benchmark::DumpCurrentCpuMemoryUsage(cpu_mem_file_name);
#if defined(WITH_GPU)
fastdeploy::benchmark::DumpCurrentGpuMemoryUsage(gpu_mem_file_name,
FLAGS_device_id);
#endif
}
tc.Start();
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
tc.End();
end2end_statis.push_back(tc.Duration() * 1000);
}
float end2end = std::accumulate(end2end_statis.end() - repeats,
end2end_statis.end(), 0.f) /
repeats;
std::cout << "End2End(ms): " << end2end << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
int repeats = FLAGS_repeat;
int warmup = FLAGS_warmup;
int dump_period = FLAGS_dump_period;
std::string cpu_mem_file_name = "result_cpu.txt";
std::string gpu_mem_file_name = "result_gpu.txt";
// Run model
if (RunModel(FLAGS_model, FLAGS_image, warmup, repeats, dump_period,
cpu_mem_file_name, gpu_mem_file_name) != true) {
exit(1);
}
if (FLAGS_collect_memory_info) {
float cpu_mem = fastdeploy::benchmark::GetCpuMemoryUsage(cpu_mem_file_name);
std::cout << "cpu_pss_mb: " << cpu_mem << "MB." << std::endl;
#if defined(WITH_GPU)
float gpu_mem = fastdeploy::benchmark::GetGpuMemoryUsage(gpu_mem_file_name);
std::cout << "gpu_pss_mb: " << gpu_mem << "MB." << std::endl;
#endif
}
fastdeploy::vision::DetectionResult res;
BENCHMARK_MODEL(model_ppyolov8, model_ppyolov8.Predict(im, &res))
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
return 0;
}

95
benchmark/cpp/benchmark_yolov5.cc Executable file → Normal file
View File

@@ -12,96 +12,25 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/vision.h"
#include "flags.h"
#include "macros.h"
#include "option.h"
bool RunModel(std::string model_file, std::string image_file, size_t warmup,
size_t repeats, size_t sampling_interval) {
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
auto im = cv::imread(FLAGS_image);
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return false;
}
if (FLAGS_profile_mode == "runtime") {
option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup);
}
auto model = fastdeploy::vision::detection::YOLOv5(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return false;
}
auto im = cv::imread(image_file);
// For collect memory info
fastdeploy::benchmark::ResourceUsageMonitor resource_moniter(
sampling_interval, FLAGS_device_id);
if (FLAGS_collect_memory_info) {
resource_moniter.Start();
}
// For Runtime
if (FLAGS_profile_mode == "runtime") {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
double profile_time = model.GetProfileTime() * 1000;
std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
} else {
// For End2End
// Step1: warm up for warmup times
std::cout << "Warmup " << warmup << " times..." << std::endl;
for (int i = 0; i < warmup; i++) {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
}
// Step2: repeat for repeats times
std::cout << "Counting time..." << std::endl;
std::cout << "Repeat " << repeats << " times..." << std::endl;
fastdeploy::vision::DetectionResult res;
fastdeploy::TimeCounter tc;
tc.Start();
for (int i = 0; i < repeats; i++) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
}
tc.End();
double end2end = tc.Duration() / repeats * 1000;
std::cout << "End2End(ms): " << end2end << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
if (FLAGS_collect_memory_info) {
float cpu_mem = resource_moniter.GetMaxCpuMem();
float gpu_mem = resource_moniter.GetMaxGpuMem();
float gpu_util = resource_moniter.GetMaxGpuUtil();
std::cout << "cpu_pss_mb: " << cpu_mem << "MB." << std::endl;
std::cout << "gpu_pss_mb: " << gpu_mem << "MB." << std::endl;
std::cout << "gpu_util: " << gpu_util << std::endl;
resource_moniter.Stop();
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
int repeats = FLAGS_repeat;
int warmup = FLAGS_warmup;
int sampling_interval = FLAGS_sampling_interval;
// Run model
if (!RunModel(FLAGS_model, FLAGS_image, warmup, repeats, sampling_interval)) {
exit(1);
}
auto model_yolov5 =
fastdeploy::vision::detection::YOLOv5(FLAGS_model, "", option);
fastdeploy::vision::DetectionResult res;
BENCHMARK_MODEL(model_yolov5, model_yolov5.Predict(im, &res))
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
return 0;
}

View File

@@ -15,7 +15,6 @@
#pragma once
#include "gflags/gflags.h"
#include "fastdeploy/utils/perf.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
@@ -49,75 +48,3 @@ void PrintUsage() {
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu(FLAGS_device_id);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") {
option->UseTrtBackend();
if (FLAGS_backend == "paddle_trt") {
option->EnablePaddleToTrt();
}
if (FLAGS_use_fp16) {
option->EnableTrtFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with GPU, only support "
"default/ort/paddle/trt/paddle_trt now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "cpu") {
option->SetCpuThreadNum(FLAGS_cpu_thread_nums);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "ov") {
option->UseOpenVINOBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "lite") {
option->UsePaddleLiteBackend();
if (FLAGS_use_fp16) {
option->EnableLiteFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with CPU, only support "
"default/ort/ov/paddle/lite now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "xpu") {
option->UseKunlunXin(FLAGS_device_id);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "lite") {
option->UsePaddleLiteBackend();
if (FLAGS_use_fp16) {
option->EnableLiteFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with XPU, only support "
"default/ort/paddle/lite now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else {
std::cerr << "Only support device CPU/GPU/XPU now, " << FLAGS_device
<< " is not supported." << std::endl;
return false;
}
return true;
}

70
benchmark/cpp/macros.h Executable file
View File

@@ -0,0 +1,70 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/utils/perf.h"
#define BENCHMARK_MODEL(MODEL_NAME, BENCHMARK_FUNC) \
{ \
std::cout << "====" << #MODEL_NAME << "====" << std::endl; \
if (!MODEL_NAME.Initialized()) { \
std::cerr << "Failed to initialize." << std::endl; \
return 0; \
} \
auto __im__ = cv::imread(FLAGS_image); \
fastdeploy::benchmark::ResourceUsageMonitor __resource_moniter__( \
FLAGS_sampling_interval, FLAGS_device_id); \
if (FLAGS_collect_memory_info) { \
__resource_moniter__.Start(); \
} \
if (FLAGS_profile_mode == "runtime") { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
double __profile_time__ = MODEL_NAME.GetProfileTime() * 1000; \
std::cout << "Runtime(ms): " << __profile_time__ << "ms." << std::endl; \
} else { \
std::cout << "Warmup " << FLAGS_warmup << " times..." << std::endl; \
for (int __i__ = 0; __i__ < FLAGS_warmup; __i__++) { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
} \
std::cout << "Counting time..." << std::endl; \
std::cout << "Repeat " << FLAGS_repeat << " times..." << std::endl; \
fastdeploy::TimeCounter __tc__; \
__tc__.Start(); \
for (int __i__ = 0; __i__ < FLAGS_repeat; __i__++) { \
if (!BENCHMARK_FUNC) { \
std::cerr << "Failed to predict." << std::endl; \
return 0; \
} \
} \
__tc__.End(); \
double __end2end__ = __tc__.Duration() / FLAGS_repeat * 1000; \
std::cout << "End2End(ms): " << __end2end__ << "ms." << std::endl; \
} \
if (FLAGS_collect_memory_info) { \
float __cpu_mem__ = __resource_moniter__.GetMaxCpuMem(); \
float __gpu_mem__ = __resource_moniter__.GetMaxGpuMem(); \
float __gpu_util__ = __resource_moniter__.GetMaxGpuUtil(); \
std::cout << "cpu_pss_mb: " << __cpu_mem__ << "MB." << std::endl; \
std::cout << "gpu_pss_mb: " << __gpu_mem__ << "MB." << std::endl; \
std::cout << "gpu_util: " << __gpu_util__ << std::endl; \
__resource_moniter__.Stop(); \
} \
}

92
benchmark/cpp/option.h Executable file
View File

@@ -0,0 +1,92 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision.h"
static bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_profile_mode == "runtime") {
option->EnableProfiling(FLAGS_include_h2d_d2h, FLAGS_repeat, FLAGS_warmup);
}
if (FLAGS_device == "gpu") {
option->UseGpu(FLAGS_device_id);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") {
option->UseTrtBackend();
if (FLAGS_backend == "paddle_trt") {
option->EnablePaddleToTrt();
}
if (FLAGS_use_fp16) {
option->EnableTrtFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with GPU, only support "
"default/ort/paddle/trt/paddle_trt now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "cpu") {
option->SetCpuThreadNum(FLAGS_cpu_thread_nums);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "ov") {
option->UseOpenVINOBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "lite") {
option->UsePaddleLiteBackend();
if (FLAGS_use_fp16) {
option->EnableLiteFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with CPU, only support "
"default/ort/ov/paddle/lite now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "xpu") {
option->UseKunlunXin(FLAGS_device_id);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "lite") {
option->UsePaddleLiteBackend();
if (FLAGS_use_fp16) {
option->EnableLiteFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with XPU, only support "
"default/ort/paddle/lite now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else {
std::cerr << "Only support device CPU/GPU/XPU now, " << FLAGS_device
<< " is not supported." << std::endl;
return false;
}
return true;
}