mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-02 12:44:20 +08:00
[Feature] support mtp logprob (#4464)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* support mtp logprob * fix unitest
This commit is contained in:
@@ -348,7 +348,9 @@ paddle::Tensor RebuildPaddingFunc(
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
||||
int max_input_length);
|
||||
const paddle::optional<paddle::Tensor> &first_token_out,
|
||||
int max_input_length,
|
||||
bool enable_logprob);
|
||||
|
||||
void GetStopFlagsMulti(const paddle::Tensor &topk_ids,
|
||||
const paddle::Tensor &stop_flags,
|
||||
@@ -910,6 +912,32 @@ void SaveOutMmsgStatic(const paddle::Tensor& x,
|
||||
int64_t rank_id,
|
||||
bool save_each_rank);
|
||||
|
||||
void SpeculateGetLogits(const paddle::Tensor &draft_logits,
|
||||
const paddle::Tensor &next_token_num,
|
||||
const paddle::Tensor &batch_token_num,
|
||||
const paddle::Tensor &cu_next_token_offset,
|
||||
const paddle::Tensor &cu_batch_token_offset,
|
||||
const paddle::Tensor &logits,
|
||||
const paddle::Tensor &first_token_logits,
|
||||
const paddle::Tensor &seq_lens_this_time,
|
||||
const paddle::Tensor &seq_lens_encoder);
|
||||
|
||||
void SpeculateInsertFirstToken(const paddle::Tensor &token_ids,
|
||||
const paddle::Tensor &accept_tokens,
|
||||
const paddle::Tensor &next_tokens,
|
||||
const paddle::Tensor &cu_next_token_offset,
|
||||
const paddle::Tensor &cu_batch_token_offset,
|
||||
const paddle::Tensor &seq_lens_this_time,
|
||||
const paddle::Tensor &seq_lens_encoder);
|
||||
|
||||
void SpeculateGetTargetLogits(const paddle::Tensor &target_logits,
|
||||
const paddle::Tensor &logits,
|
||||
const paddle::Tensor &cu_batch_token_offset,
|
||||
const paddle::Tensor &ori_cu_batch_token_offset,
|
||||
const paddle::Tensor &seq_lens_this_time,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::Tensor &accept_num);
|
||||
|
||||
PYBIND11_MODULE(fastdeploy_ops, m) {
|
||||
|
||||
m.def("get_expert_token_num", &GetExpertTokenNum, py::arg("topk_ids"),
|
||||
@@ -1291,4 +1319,10 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
|
||||
m.def("min_p_sampling", &MinPSamplingFromProbs, "min_p_sampling function");
|
||||
|
||||
m.def("save_output", &SaveOutMmsgStatic, "save_output function");
|
||||
|
||||
m.def("speculate_get_logits", &SpeculateGetLogits, "speculate_get_logits function");
|
||||
|
||||
m.def("speculate_insert_first_token", &SpeculateInsertFirstToken, "speculate_insert_first_token function");
|
||||
|
||||
m.def("speculate_get_target_logits", &SpeculateGetTargetLogits, "speculate_get_target_logits function");
|
||||
}
|
||||
|
||||
@@ -46,6 +46,7 @@ __global__ void RebuildPaddingKernel(T *output_data,
|
||||
|
||||
template <typename T, int VecSize>
|
||||
__global__ void RebuildAppendPaddingKernel(T *output_data,
|
||||
T *first_token_out,
|
||||
const T *input_data,
|
||||
const int *cu_seqlens_q,
|
||||
const int *seq_len_this_time,
|
||||
@@ -55,7 +56,8 @@ __global__ void RebuildAppendPaddingKernel(T *output_data,
|
||||
const int max_input_length,
|
||||
const int dim_embed,
|
||||
const int64_t output_elem_nums,
|
||||
const int bsz) {
|
||||
const int bsz,
|
||||
const bool enable_logprob) {
|
||||
AlignedVector<T, VecSize> src_vec;
|
||||
const int64_t global_idx = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
for (int64_t i = global_idx * VecSize; i < output_elem_nums;
|
||||
@@ -70,13 +72,20 @@ __global__ void RebuildAppendPaddingKernel(T *output_data,
|
||||
if (seq_len_decoder[bi] == 0 && seq_len_encoder[bi] == 0) continue;
|
||||
|
||||
if (seq_len_encoder[bi] > 0) seq_id = seq_len_encoder[bi] - 1;
|
||||
const int cum_offset_bi = bi * max_input_length - cu_seqlens_q[bi];
|
||||
const int cum_offset_bi = bi * max_input_length - cu_seqlens_q[bi];
|
||||
const int input_token_id = ori_token_id - cum_offset_bi + seq_id;
|
||||
const int bias_idx = i % dim_embed;
|
||||
|
||||
Load<T, VecSize>(&input_data[input_token_id * dim_embed + bias_idx],
|
||||
&src_vec);
|
||||
Store<T, VecSize>(src_vec, &output_data[i]);
|
||||
|
||||
if (enable_logprob && seq_len_encoder[bi] > 0) {
|
||||
const int first_input_token_id = input_token_id - 1;
|
||||
Load<T, VecSize>(&input_data[first_input_token_id * dim_embed + bias_idx],
|
||||
&src_vec);
|
||||
Store<T, VecSize>(src_vec, &first_token_out[bi * dim_embed + bias_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -89,7 +98,9 @@ std::vector<paddle::Tensor> rebuild_padding(
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
||||
int max_input_length) {
|
||||
const paddle::optional<paddle::Tensor> &first_token_out,
|
||||
int max_input_length,
|
||||
bool enable_logprob) {
|
||||
typedef PDTraits<D> traits_;
|
||||
typedef typename traits_::DataType DataType_;
|
||||
typedef typename traits_::data_t data_t;
|
||||
@@ -134,6 +145,10 @@ std::vector<paddle::Tensor> rebuild_padding(
|
||||
RebuildAppendPaddingKernel<DataType_, PackSize>
|
||||
<<<grid_size, blocksize, 0, cu_stream>>>(
|
||||
reinterpret_cast<DataType_ *>(out.data<data_t>()),
|
||||
first_token_out.is_initialized()
|
||||
? reinterpret_cast<DataType_ *>(const_cast<data_t *>(
|
||||
first_token_out.get_ptr()->data<data_t>()))
|
||||
: nullptr,
|
||||
reinterpret_cast<const DataType_ *>(tmp_out.data<data_t>()),
|
||||
cu_seqlens_q.data<int>(),
|
||||
seq_len_this_time.data<int>(),
|
||||
@@ -143,7 +158,8 @@ std::vector<paddle::Tensor> rebuild_padding(
|
||||
max_input_length,
|
||||
dim_embed,
|
||||
elem_nums,
|
||||
bsz);
|
||||
bsz,
|
||||
enable_logprob);
|
||||
} else {
|
||||
RebuildPaddingKernel<DataType_, PackSize>
|
||||
<<<grid_size, blocksize, 0, cu_stream>>>(
|
||||
@@ -168,7 +184,9 @@ paddle::Tensor RebuildPaddingFunc(
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
||||
int max_input_length) {
|
||||
const paddle::optional<paddle::Tensor> &first_token_out,
|
||||
int max_input_length,
|
||||
bool enable_logprob) {
|
||||
switch (tmp_out.type()) {
|
||||
case paddle::DataType::BFLOAT16: {
|
||||
return rebuild_padding<paddle::DataType::BFLOAT16>(
|
||||
@@ -178,7 +196,9 @@ paddle::Tensor RebuildPaddingFunc(
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
max_input_length)[0];
|
||||
first_token_out,
|
||||
max_input_length,
|
||||
enable_logprob)[0];
|
||||
}
|
||||
case paddle::DataType::FLOAT16: {
|
||||
return rebuild_padding<paddle::DataType::FLOAT16>(
|
||||
@@ -188,7 +208,9 @@ paddle::Tensor RebuildPaddingFunc(
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
max_input_length)[0];
|
||||
first_token_out,
|
||||
max_input_length,
|
||||
enable_logprob)[0];
|
||||
}
|
||||
case paddle::DataType::FLOAT32: {
|
||||
return rebuild_padding<paddle::DataType::FLOAT32>(
|
||||
@@ -198,7 +220,9 @@ paddle::Tensor RebuildPaddingFunc(
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
max_input_length)[0];
|
||||
first_token_out,
|
||||
max_input_length,
|
||||
enable_logprob)[0];
|
||||
}
|
||||
default: {
|
||||
PD_THROW(
|
||||
@@ -216,14 +240,18 @@ std::vector<paddle::Tensor> RebuildPadding(
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
||||
int max_input_length) {
|
||||
const paddle::optional<paddle::Tensor> &first_token_out,
|
||||
int max_input_length,
|
||||
bool enable_logprob) {
|
||||
return {RebuildPaddingFunc(tmp_out,
|
||||
cu_seqlens_q,
|
||||
seq_len_this_time,
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
max_input_length)};
|
||||
first_token_out,
|
||||
max_input_length,
|
||||
enable_logprob)};
|
||||
}
|
||||
|
||||
std::vector<std::vector<int64_t>> RebuildPaddingInferShape(
|
||||
@@ -259,9 +287,10 @@ PD_BUILD_STATIC_OP(rebuild_padding)
|
||||
"seq_len_this_time",
|
||||
"seq_lens_decoder",
|
||||
"seq_lens_encoder",
|
||||
paddle::Optional("output_padding_offset")})
|
||||
paddle::Optional("output_padding_offset"),
|
||||
paddle::Optional("first_token_out")})
|
||||
.Outputs({"out"})
|
||||
.Attrs({"max_input_length: int"})
|
||||
.Attrs({"max_input_length: int", "enable_logprob: bool"})
|
||||
.SetKernelFn(PD_KERNEL(RebuildPadding))
|
||||
.SetInferShapeFn(PD_INFER_SHAPE(RebuildPaddingInferShape))
|
||||
.SetInferDtypeFn(PD_INFER_DTYPE(RebuildPaddingInferDtype));
|
||||
|
||||
@@ -0,0 +1,161 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/msg.h>
|
||||
#include <sys/types.h>
|
||||
#include "paddle/extension.h"
|
||||
|
||||
#ifndef PD_BUILD_STATIC_OP
|
||||
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
|
||||
#endif
|
||||
|
||||
#define MAX_BSZ 512
|
||||
#define K 20
|
||||
#define MAX_DRAFT_TOKEN_NUM 6
|
||||
|
||||
struct batch_msgdata {
|
||||
int tokens[MAX_DRAFT_TOKEN_NUM * (K + 1)];
|
||||
float scores[MAX_DRAFT_TOKEN_NUM * (K + 1)];
|
||||
int ranks[MAX_DRAFT_TOKEN_NUM];
|
||||
};
|
||||
|
||||
struct msgdata {
|
||||
long mtype;
|
||||
int meta[3 + MAX_BSZ]; // stop_flag, message_flag, bsz, batch_token_nums
|
||||
batch_msgdata mtext[MAX_BSZ];
|
||||
};
|
||||
|
||||
void SpeculateGetOutMmsgTopK(const paddle::Tensor& output_tokens,
|
||||
const paddle::Tensor& output_scores,
|
||||
const paddle::Tensor& output_ranks,
|
||||
int real_k,
|
||||
int64_t rank_id,
|
||||
bool wait_flag) {
|
||||
struct msgdata msg_rcv;
|
||||
int msg_queue_id = 1;
|
||||
|
||||
if (const char* inference_msg_queue_id_env_p =
|
||||
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
|
||||
std::string inference_msg_queue_id_env_str(
|
||||
inference_msg_queue_id_env_p);
|
||||
int inference_msg_queue_id_from_env =
|
||||
std::stoi(inference_msg_queue_id_env_str);
|
||||
#ifdef SPECULATE_GET_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
|
||||
<< inference_msg_queue_id_from_env << std::endl;
|
||||
#endif
|
||||
msg_queue_id = inference_msg_queue_id_from_env;
|
||||
}
|
||||
static key_t key = ftok("/dev/shm", msg_queue_id);
|
||||
|
||||
static int msgid = msgget(key, IPC_CREAT | 0666);
|
||||
#ifdef SPECULATE_GET_WITH_OUTPUT_DEBUG
|
||||
std::cout << "get_output_key: " << key << std::endl;
|
||||
std::cout << "get_output msgid: " << msgid << std::endl;
|
||||
#endif
|
||||
|
||||
int64_t* output_tokens_data =
|
||||
const_cast<int64_t*>(output_tokens.data<int64_t>());
|
||||
float* output_scores_data = const_cast<float*>(output_scores.data<float>());
|
||||
int64_t* output_ranks_data =
|
||||
const_cast<int64_t*>(output_ranks.data<int64_t>());
|
||||
int ret = -1;
|
||||
if (!wait_flag) {
|
||||
ret = msgrcv(
|
||||
msgid, &msg_rcv, sizeof(msg_rcv) - sizeof(long), 0, IPC_NOWAIT);
|
||||
} else {
|
||||
ret = msgrcv(msgid, &msg_rcv, sizeof(msg_rcv) - sizeof(long), 0, 0);
|
||||
}
|
||||
if (ret == -1) {
|
||||
// read none
|
||||
output_tokens_data[0] = -2; // stop_flag
|
||||
output_tokens_data[1] = 0; // message_flag, Target: 3, Draft: 4
|
||||
output_tokens_data[2] = 0; // bsz
|
||||
return;
|
||||
}
|
||||
|
||||
int bsz = msg_rcv.meta[2];
|
||||
output_tokens_data[0] = (int64_t)msg_rcv.meta[0];
|
||||
output_tokens_data[1] = (int64_t)msg_rcv.meta[1];
|
||||
output_tokens_data[2] = (int64_t)msg_rcv.meta[2];
|
||||
|
||||
int output_tokens_offset = 3 + MAX_BSZ;
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
int cur_token_num = msg_rcv.meta[3 + i];
|
||||
output_tokens_data[3 + i] = (int64_t)cur_token_num; // batch_token_nums
|
||||
|
||||
auto* cur_output_token = output_tokens_data + output_tokens_offset +
|
||||
i * (MAX_DRAFT_TOKEN_NUM * (K + 1));
|
||||
auto* cur_output_score =
|
||||
output_scores_data + i * (MAX_DRAFT_TOKEN_NUM * (K + 1));
|
||||
auto* cur_batch_msg_rcv = &msg_rcv.mtext[i];
|
||||
for (int j = 0; j < cur_token_num; j++) {
|
||||
for (int k = 0; k < real_k + 1; k++) {
|
||||
cur_output_token[j * (K + 1) + k] =
|
||||
(int64_t)cur_batch_msg_rcv->tokens[j * (K + 1) + k];
|
||||
cur_output_score[j * (K + 1) + k] =
|
||||
cur_batch_msg_rcv->scores[j * (K + 1) + k];
|
||||
}
|
||||
output_ranks_data[i * MAX_DRAFT_TOKEN_NUM + j] =
|
||||
(int64_t)cur_batch_msg_rcv->ranks[j];
|
||||
}
|
||||
}
|
||||
#ifdef SPECULATE_GET_WITH_OUTPUT_DEBUG
|
||||
std::cout << "msg data: " << std::endl;
|
||||
std::cout << "stop_flag: " << output_tokens_data[0]
|
||||
<< ", message_flag: " << output_tokens_data[1]
|
||||
<< ", bsz: " << output_tokens_data[2] << std::endl;
|
||||
for (int i = 0; i < output_tokens_data[2]; i++) {
|
||||
int cur_token_num = output_tokens_data[3 + i];
|
||||
std::cout << "batch " << i << " token_num: " << cur_token_num
|
||||
<< std::endl;
|
||||
for (int j = 0; j < cur_token_num; j++) {
|
||||
std::cout << "tokens: ";
|
||||
for (int k = 0; k < K + 1; k++) {
|
||||
std::cout
|
||||
<< output_tokens_data[output_tokens_offset +
|
||||
i * MAX_DRAFT_TOKEN_NUM * (K + 1) +
|
||||
j * (K + 1) + k]
|
||||
<< " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "scores: ";
|
||||
for (int k = 0; k < K + 1; k++) {
|
||||
std::cout
|
||||
<< output_scores_data[i * MAX_DRAFT_TOKEN_NUM * (K + 1) +
|
||||
j * (K + 1) + k]
|
||||
<< " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "ranks: "
|
||||
<< output_ranks_data[i * MAX_DRAFT_TOKEN_NUM + j]
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(speculate_get_output_topk)
|
||||
.Inputs({"output_tokens", "output_scores", "output_ranks"})
|
||||
.Attrs({"real_k: int", "rank_id: int64_t", "wait_flag: bool"})
|
||||
.Outputs({"output_tokens_out", "output_scores_out", "output_ranks_out"})
|
||||
.SetInplaceMap({{"output_tokens", "output_tokens_out"},
|
||||
{"output_scores", "output_scores_out"},
|
||||
{"output_ranks", "output_ranks_out"}})
|
||||
.SetKernelFn(PD_KERNEL(SpeculateGetOutMmsgTopK));
|
||||
290
custom_ops/gpu_ops/speculate_decoding/speculate_logprob_utils.cu
Normal file
290
custom_ops/gpu_ops/speculate_decoding/speculate_logprob_utils.cu
Normal file
@@ -0,0 +1,290 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
__global__ void get_token_num_per_batch_kernel(int* next_token_num,
|
||||
int* batch_token_num,
|
||||
const int* seq_lens_this_time,
|
||||
const int* seq_lens_encoder,
|
||||
const int real_bsz) {
|
||||
int bid = threadIdx.x;
|
||||
if (bid < real_bsz) {
|
||||
next_token_num[bid] =
|
||||
seq_lens_encoder[bid] > 0 ? 1 : seq_lens_this_time[bid];
|
||||
batch_token_num[bid] =
|
||||
seq_lens_encoder[bid] > 0 ? 2 : seq_lens_this_time[bid];
|
||||
}
|
||||
}
|
||||
|
||||
template <int VecSize>
|
||||
__global__ void speculate_get_logits_kernel(float* draft_logits,
|
||||
const float* logits,
|
||||
const float* first_token_logits,
|
||||
const int* cu_next_token_offset,
|
||||
const int* cu_batch_token_offset,
|
||||
const int* seq_lens_this_time,
|
||||
const int* seq_lens_encoder,
|
||||
const int vocab_size,
|
||||
const int real_bsz) {
|
||||
AlignedVector<float, VecSize> src_vec;
|
||||
const int bid = blockIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
if (bid < real_bsz) {
|
||||
auto* draft_logits_now =
|
||||
draft_logits + cu_batch_token_offset[bid] * vocab_size;
|
||||
auto* logits_now = logits + cu_next_token_offset[bid] * vocab_size;
|
||||
for (int i = tid * VecSize; i < vocab_size; i += blockDim.x * VecSize) {
|
||||
if (seq_lens_encoder[bid] > 0) {
|
||||
Load<float, VecSize>(&first_token_logits[bid * vocab_size + i],
|
||||
&src_vec);
|
||||
Store<float, VecSize>(src_vec, &draft_logits_now[i]);
|
||||
|
||||
Load<float, VecSize>(&logits_now[i], &src_vec);
|
||||
Store<float, VecSize>(src_vec,
|
||||
&draft_logits_now[vocab_size + i]);
|
||||
} else {
|
||||
for (int j = 0; j < seq_lens_this_time[bid]; j++) {
|
||||
Load<float, VecSize>(&logits_now[j * vocab_size + i],
|
||||
&src_vec);
|
||||
Store<float, VecSize>(
|
||||
src_vec, &draft_logits_now[j * vocab_size + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SpeculateGetLogits(const paddle::Tensor& draft_logits,
|
||||
const paddle::Tensor& next_token_num,
|
||||
const paddle::Tensor& batch_token_num,
|
||||
const paddle::Tensor& cu_next_token_offset,
|
||||
const paddle::Tensor& cu_batch_token_offset,
|
||||
const paddle::Tensor& logits,
|
||||
const paddle::Tensor& first_token_logits,
|
||||
const paddle::Tensor& seq_lens_this_time,
|
||||
const paddle::Tensor& seq_lens_encoder) {
|
||||
auto cu_stream = seq_lens_this_time.stream();
|
||||
const int vocab_size = logits.shape()[1];
|
||||
const int real_bsz = seq_lens_this_time.shape()[0];
|
||||
|
||||
get_token_num_per_batch_kernel<<<1, 512, 0, cu_stream>>>(
|
||||
const_cast<int*>(next_token_num.data<int>()),
|
||||
const_cast<int*>(batch_token_num.data<int>()),
|
||||
seq_lens_this_time.data<int>(),
|
||||
seq_lens_encoder.data<int>(),
|
||||
real_bsz);
|
||||
|
||||
void* temp_storage1 = nullptr;
|
||||
size_t temp_storage_bytes1 = 0;
|
||||
cub::DeviceScan::InclusiveSum(
|
||||
temp_storage1,
|
||||
temp_storage_bytes1,
|
||||
batch_token_num.data<int>(),
|
||||
const_cast<int*>(&cu_batch_token_offset.data<int>()[1]),
|
||||
real_bsz,
|
||||
cu_stream);
|
||||
cudaMalloc(&temp_storage1, temp_storage_bytes1);
|
||||
cub::DeviceScan::InclusiveSum(
|
||||
temp_storage1,
|
||||
temp_storage_bytes1,
|
||||
batch_token_num.data<int>(),
|
||||
const_cast<int*>(&cu_batch_token_offset.data<int>()[1]),
|
||||
real_bsz,
|
||||
cu_stream);
|
||||
|
||||
void* temp_storage2 = nullptr;
|
||||
size_t temp_storage_bytes2 = 0;
|
||||
cub::DeviceScan::InclusiveSum(
|
||||
temp_storage2,
|
||||
temp_storage_bytes2,
|
||||
next_token_num.data<int>(),
|
||||
const_cast<int*>(&cu_next_token_offset.data<int>()[1]),
|
||||
real_bsz,
|
||||
cu_stream);
|
||||
cudaMalloc(&temp_storage2, temp_storage_bytes2);
|
||||
cub::DeviceScan::InclusiveSum(
|
||||
temp_storage2,
|
||||
temp_storage_bytes2,
|
||||
next_token_num.data<int>(),
|
||||
const_cast<int*>(&cu_next_token_offset.data<int>()[1]),
|
||||
real_bsz,
|
||||
cu_stream);
|
||||
|
||||
constexpr int PackSize = VEC_16B / sizeof(float);
|
||||
dim3 grid_dim(real_bsz);
|
||||
dim3 block_dim(128);
|
||||
speculate_get_logits_kernel<PackSize>
|
||||
<<<grid_dim, block_dim, 0, cu_stream>>>(
|
||||
const_cast<float*>(draft_logits.data<float>()),
|
||||
logits.data<float>(),
|
||||
first_token_logits.data<float>(),
|
||||
cu_next_token_offset.data<int>(),
|
||||
cu_batch_token_offset.data<int>(),
|
||||
seq_lens_this_time.data<int>(),
|
||||
seq_lens_encoder.data<int>(),
|
||||
vocab_size,
|
||||
real_bsz);
|
||||
}
|
||||
|
||||
__global__ void speculate_insert_first_token_kernel(
|
||||
int64_t* token_ids,
|
||||
const int64_t* accept_tokens,
|
||||
const int64_t* next_tokens,
|
||||
const int* cu_next_token_offset,
|
||||
const int* cu_batch_token_offset,
|
||||
const int* seq_lens_this_time,
|
||||
const int* seq_lens_encoder,
|
||||
const int max_draft_tokens,
|
||||
const int real_bsz) {
|
||||
const int bid = threadIdx.x;
|
||||
|
||||
auto* token_ids_now = token_ids + cu_batch_token_offset[bid];
|
||||
auto* accept_tokens_now = accept_tokens + bid * max_draft_tokens;
|
||||
auto* next_tokens_now = next_tokens + cu_next_token_offset[bid];
|
||||
if (seq_lens_encoder[bid] != 0) {
|
||||
token_ids_now[0] = accept_tokens_now[0];
|
||||
token_ids_now[1] = next_tokens_now[0];
|
||||
} else {
|
||||
for (int i = 0; i < seq_lens_this_time[bid]; i++) {
|
||||
token_ids_now[i] = next_tokens_now[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SpeculateInsertFirstToken(const paddle::Tensor& token_ids,
|
||||
const paddle::Tensor& accept_tokens,
|
||||
const paddle::Tensor& next_tokens,
|
||||
const paddle::Tensor& cu_next_token_offset,
|
||||
const paddle::Tensor& cu_batch_token_offset,
|
||||
const paddle::Tensor& seq_lens_this_time,
|
||||
const paddle::Tensor& seq_lens_encoder) {
|
||||
auto cu_stream = seq_lens_this_time.stream();
|
||||
const int max_draft_tokens = accept_tokens.shape()[1];
|
||||
const int real_bsz = seq_lens_this_time.shape()[0];
|
||||
|
||||
speculate_insert_first_token_kernel<<<1, real_bsz, 0, cu_stream>>>(
|
||||
const_cast<int64_t*>(token_ids.data<int64_t>()),
|
||||
accept_tokens.data<int64_t>(),
|
||||
next_tokens.data<int64_t>(),
|
||||
cu_next_token_offset.data<int>(),
|
||||
cu_batch_token_offset.data<int>(),
|
||||
seq_lens_this_time.data<int>(),
|
||||
seq_lens_encoder.data<int>(),
|
||||
max_draft_tokens,
|
||||
real_bsz);
|
||||
}
|
||||
|
||||
template <int VecSize>
|
||||
__global__ void speculate_get_target_logits_kernel(
|
||||
float* target_logtis,
|
||||
const float* logits,
|
||||
const int* cu_batch_token_offset,
|
||||
const int* ori_cu_batch_token_offset,
|
||||
const int* seq_lens_this_time,
|
||||
const int* seq_lens_encoder,
|
||||
const int* accept_num,
|
||||
const int vocab_size,
|
||||
const int real_bsz) {
|
||||
AlignedVector<float, VecSize> src_vec;
|
||||
const int bid = blockIdx.x;
|
||||
const int tid = threadIdx.x;
|
||||
if (bid < real_bsz) {
|
||||
auto* target_logtis_now =
|
||||
target_logtis + cu_batch_token_offset[bid] * vocab_size;
|
||||
auto* logits_now = logits + ori_cu_batch_token_offset[bid] * vocab_size;
|
||||
for (int i = tid * VecSize; i < vocab_size; i += blockDim.x * VecSize) {
|
||||
if (seq_lens_encoder[bid] > 0) {
|
||||
Load<float, VecSize>(&logits_now[i], &src_vec);
|
||||
Store<float, VecSize>(src_vec, &target_logtis_now[i]);
|
||||
} else {
|
||||
for (int j = 0; j < accept_num[bid]; j++) {
|
||||
Load<float, VecSize>(&logits_now[j * vocab_size + i],
|
||||
&src_vec);
|
||||
Store<float, VecSize>(
|
||||
src_vec, &target_logtis_now[j * vocab_size + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SpeculateGetTargetLogits(const paddle::Tensor& target_logits,
|
||||
const paddle::Tensor& logits,
|
||||
const paddle::Tensor& cu_batch_token_offset,
|
||||
const paddle::Tensor& ori_cu_batch_token_offset,
|
||||
const paddle::Tensor& seq_lens_this_time,
|
||||
const paddle::Tensor& seq_lens_encoder,
|
||||
const paddle::Tensor& accept_num) {
|
||||
auto cu_stream = seq_lens_this_time.stream();
|
||||
const int vocab_size = logits.shape()[1];
|
||||
const int real_bsz = seq_lens_this_time.shape()[0];
|
||||
|
||||
constexpr int PackSize = VEC_16B / sizeof(float);
|
||||
dim3 grid_dim(real_bsz);
|
||||
dim3 block_dim(128);
|
||||
speculate_get_target_logits_kernel<PackSize>
|
||||
<<<grid_dim, block_dim, 0, cu_stream>>>(
|
||||
const_cast<float*>(target_logits.data<float>()),
|
||||
logits.data<float>(),
|
||||
cu_batch_token_offset.data<int>(),
|
||||
ori_cu_batch_token_offset.data<int>(),
|
||||
seq_lens_this_time.data<int>(),
|
||||
seq_lens_encoder.data<int>(),
|
||||
accept_num.data<int>(),
|
||||
vocab_size,
|
||||
real_bsz);
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(speculate_get_logits)
|
||||
.Inputs({"draft_logits",
|
||||
"next_token_num",
|
||||
"batch_token_num",
|
||||
"cu_next_token_offset",
|
||||
"cu_batch_token_offset",
|
||||
"logits",
|
||||
"first_token_logits",
|
||||
"seq_lens_this_time",
|
||||
"seq_lens_encoder"})
|
||||
.Outputs({"draft_logits_out",
|
||||
"batch_token_num_out",
|
||||
"cu_batch_token_offset_out"})
|
||||
.SetInplaceMap({{"draft_logits", "draft_logits_out"},
|
||||
{"batch_token_num", "batch_token_num_out"},
|
||||
{"cu_batch_token_offset", "cu_batch_token_offset_out"}})
|
||||
.SetKernelFn(PD_KERNEL(SpeculateGetLogits));
|
||||
|
||||
PD_BUILD_STATIC_OP(speculate_insert_first_token)
|
||||
.Inputs({"token_ids",
|
||||
"accept_tokens",
|
||||
"next_tokens",
|
||||
"cu_next_token_offset",
|
||||
"cu_batch_token_offset",
|
||||
"seq_lens_this_time",
|
||||
"seq_lens_encoder"})
|
||||
.Outputs({"token_ids_out"})
|
||||
.SetInplaceMap({{"token_ids", "token_ids_out"}})
|
||||
.SetKernelFn(PD_KERNEL(SpeculateInsertFirstToken));
|
||||
|
||||
PD_BUILD_STATIC_OP(speculate_get_target_logits)
|
||||
.Inputs({"target_logits",
|
||||
"logits",
|
||||
"cu_batch_token_offset",
|
||||
"ori_cu_batch_token_offset",
|
||||
"seq_lens_this_time",
|
||||
"seq_lens_encoder",
|
||||
"accept_num"})
|
||||
.Outputs({"target_logits_out"})
|
||||
.SetInplaceMap({{"target_logits", "target_logits_out"}})
|
||||
.SetKernelFn(PD_KERNEL(SpeculateGetTargetLogits));
|
||||
@@ -0,0 +1,202 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/ipc.h>
|
||||
#include <sys/msg.h>
|
||||
#include <sys/types.h>
|
||||
#include "paddle/extension.h"
|
||||
|
||||
#ifndef PD_BUILD_STATIC_OP
|
||||
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
|
||||
#endif
|
||||
|
||||
#define MAX_BSZ 512
|
||||
#define K 20
|
||||
#define MAX_DRAFT_TOKEN_NUM 6
|
||||
|
||||
struct batch_msgdata {
|
||||
int tokens[MAX_DRAFT_TOKEN_NUM * (K + 1)];
|
||||
float scores[MAX_DRAFT_TOKEN_NUM * (K + 1)];
|
||||
int ranks[MAX_DRAFT_TOKEN_NUM];
|
||||
};
|
||||
|
||||
struct msgdata {
|
||||
long mtype;
|
||||
int meta[3 + MAX_BSZ]; // stop_flag, message_flag, bsz, batch_token_nums
|
||||
batch_msgdata mtext[MAX_BSZ];
|
||||
};
|
||||
|
||||
void SpeculateSaveOutMmsgTopK(const paddle::Tensor& sampled_token_ids,
|
||||
const paddle::Tensor& logprob_token_ids,
|
||||
const paddle::Tensor& logprob_scores,
|
||||
const paddle::Tensor& logprob_ranks,
|
||||
const paddle::Tensor& token_num_per_batch,
|
||||
const paddle::Tensor& cu_batch_token_offset,
|
||||
const paddle::Tensor& not_need_stop,
|
||||
int message_flag, // Target: 3, Draft: 4
|
||||
int64_t rank_id) {
|
||||
if (rank_id > 0) {
|
||||
return;
|
||||
}
|
||||
auto sampled_token_ids_cpu =
|
||||
sampled_token_ids.copy_to(paddle::CPUPlace(), false);
|
||||
auto logprob_token_ids_cpu =
|
||||
logprob_token_ids.copy_to(paddle::CPUPlace(), false);
|
||||
auto logprob_scores_cpu = logprob_scores.copy_to(paddle::CPUPlace(), false);
|
||||
auto logprob_ranks_cpu = logprob_ranks.copy_to(paddle::CPUPlace(), false);
|
||||
auto token_num_per_batch_cpu =
|
||||
token_num_per_batch.copy_to(paddle::CPUPlace(), false);
|
||||
auto cu_batch_token_offset_cpu =
|
||||
cu_batch_token_offset.copy_to(paddle::CPUPlace(), false);
|
||||
int64_t* sampled_token_ids_data = sampled_token_ids_cpu.data<int64_t>();
|
||||
int64_t* logprob_token_ids_data = logprob_token_ids_cpu.data<int64_t>();
|
||||
float* logprob_scores_data = logprob_scores_cpu.data<float>();
|
||||
int64_t* logprob_ranks_data = logprob_ranks_cpu.data<int64_t>();
|
||||
int* token_num_per_batch_data = token_num_per_batch_cpu.data<int>();
|
||||
int* cu_batch_token_offset_data = cu_batch_token_offset_cpu.data<int>();
|
||||
|
||||
static struct msgdata msg_sed;
|
||||
int msg_queue_id = 1;
|
||||
if (const char* inference_msg_queue_id_env_p =
|
||||
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
|
||||
std::string inference_msg_queue_id_env_str(
|
||||
inference_msg_queue_id_env_p);
|
||||
int inference_msg_queue_id_from_env =
|
||||
std::stoi(inference_msg_queue_id_env_str);
|
||||
msg_queue_id = inference_msg_queue_id_from_env;
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
|
||||
<< inference_msg_queue_id_from_env << std::endl;
|
||||
#endif
|
||||
} else {
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
int inference_msg_id_from_env = 1;
|
||||
if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
|
||||
std::string inference_msg_id_env_str(inference_msg_id_env_p);
|
||||
inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
|
||||
if (inference_msg_id_from_env == 2) {
|
||||
// 2 and -2 is perserve for no-output indication.
|
||||
throw std::runtime_error(
|
||||
" INFERENCE_MSG_ID cannot be 2, please use other number.");
|
||||
}
|
||||
if (inference_msg_id_from_env < 0) {
|
||||
throw std::runtime_error(
|
||||
" INFERENCE_MSG_ID cannot be negative, please use other "
|
||||
"number.");
|
||||
}
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "Your INFERENCE_MSG_ID is: " << inference_msg_id_from_env
|
||||
<< std::endl;
|
||||
#endif
|
||||
} else {
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout
|
||||
<< "Failed to got INFERENCE_MSG_ID at env, use (int)1 as default."
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
static key_t key = ftok("/dev/shm", msg_queue_id);
|
||||
static int msgid = msgget(key, IPC_CREAT | 0666);
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "save_output_key: " << key << std::endl;
|
||||
std::cout << "save msgid: " << msgid << std::endl;
|
||||
#endif
|
||||
msg_sed.mtype = 1;
|
||||
msg_sed.meta[0] = not_need_stop.data<bool>()[0]
|
||||
? inference_msg_id_from_env
|
||||
: -inference_msg_id_from_env;
|
||||
msg_sed.meta[1] = message_flag;
|
||||
int bsz = token_num_per_batch.shape()[0];
|
||||
msg_sed.meta[2] = bsz;
|
||||
int max_num_logprobs = logprob_token_ids.shape()[1];
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
int cur_token_num = token_num_per_batch_data[i];
|
||||
msg_sed.meta[3 + i] = cur_token_num;
|
||||
auto* cur_batch_msg_sed = &msg_sed.mtext[i];
|
||||
int token_offset = cu_batch_token_offset_data[i];
|
||||
for (int j = 0; j < cur_token_num; j++) {
|
||||
auto* cur_tokens = &cur_batch_msg_sed->tokens[j * (K + 1)];
|
||||
auto* cur_scores = &cur_batch_msg_sed->scores[j * (K + 1)];
|
||||
for (int k = 0; k < K + 1; k++) {
|
||||
if (k == 0) {
|
||||
cur_tokens[k] =
|
||||
(int)sampled_token_ids_data[token_offset + j];
|
||||
cur_scores[k] =
|
||||
logprob_scores_data[(token_offset + j) * (K + 1) + k];
|
||||
} else if (k < max_num_logprobs) {
|
||||
cur_tokens[k] = (int)
|
||||
logprob_token_ids_data[(token_offset + j) * (K + 1) +
|
||||
k];
|
||||
cur_scores[k] =
|
||||
logprob_scores_data[(token_offset + j) * (K + 1) + k];
|
||||
} else {
|
||||
cur_tokens[k] = -1;
|
||||
cur_scores[k] = 0.0;
|
||||
}
|
||||
}
|
||||
cur_batch_msg_sed->ranks[j] =
|
||||
(int)logprob_ranks_data[token_offset + j];
|
||||
}
|
||||
}
|
||||
#ifdef SPECULATE_SAVE_WITH_OUTPUT_DEBUG
|
||||
std::cout << "msg data: " << std::endl;
|
||||
std::cout << "stop_flag: " << msg_sed.meta[0]
|
||||
<< ", message_flag: " << msg_sed.meta[1]
|
||||
<< ", bsz: " << msg_sed.meta[2] << std::endl;
|
||||
for (int i = 0; i < bsz; i++) {
|
||||
int cur_token_num = msg_sed.meta[3 + i];
|
||||
auto* cur_batch_msg_sed = &msg_sed.mtext[i];
|
||||
std::cout << "batch " << i << " token_num: " << cur_token_num
|
||||
<< std::endl;
|
||||
for (int j = 0; j < cur_token_num; j++) {
|
||||
auto* cur_tokens = &cur_batch_msg_sed->tokens[j * (K + 1)];
|
||||
auto* cur_scores = &cur_batch_msg_sed->scores[j * (K + 1)];
|
||||
std::cout << "tokens: ";
|
||||
for (int k = 0; k < K + 1; k++) {
|
||||
std::cout << cur_tokens[k] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "scores: ";
|
||||
for (int k = 0; k < K + 1; k++) {
|
||||
std::cout << cur_scores[k] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "ranks: " << cur_batch_msg_sed->ranks[j] << std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
#endif
|
||||
if (msgsnd(msgid, &msg_sed, sizeof(msg_sed) - sizeof(long), 0) == -1) {
|
||||
printf("full msg buffer\n");
|
||||
}
|
||||
}
|
||||
|
||||
PD_BUILD_STATIC_OP(speculate_save_output_topk)
|
||||
.Inputs({
|
||||
"sampled_token_ids",
|
||||
"logprob_token_ids",
|
||||
"logprob_scores",
|
||||
"logprob_ranks",
|
||||
"token_num_per_batch",
|
||||
"cu_batch_token_offset",
|
||||
"not_need_stop",
|
||||
})
|
||||
.Attrs({"message_flag: int", "rank_id: int64_t"})
|
||||
.SetKernelFn(PD_KERNEL(SpeculateSaveOutMmsgTopK));
|
||||
@@ -416,8 +416,6 @@ class EngineArgs:
|
||||
# if self.dynamic_load_weight:
|
||||
# self.enable_prefix_caching = False
|
||||
if self.enable_logprob:
|
||||
if self.speculative_config is not None:
|
||||
raise NotImplementedError("Logprob does not support speculation_config.")
|
||||
if not current_platform.is_cuda():
|
||||
raise NotImplementedError("Only CUDA platform supports logprob.")
|
||||
if self.speculative_config is not None:
|
||||
|
||||
@@ -18,6 +18,10 @@ from .apply_penalty_multi_scores import (
|
||||
apply_penalty_multi_scores,
|
||||
apply_speculative_penalty_multi_scores,
|
||||
)
|
||||
from .speculate_logprob_utils import (
|
||||
speculate_get_target_logits,
|
||||
speculate_insert_first_token,
|
||||
)
|
||||
from .top_k_top_p_sampling import min_p_sampling, top_k_top_p_sampling
|
||||
|
||||
__all__ = [
|
||||
@@ -25,4 +29,6 @@ __all__ = [
|
||||
"apply_speculative_penalty_multi_scores",
|
||||
"top_k_top_p_sampling",
|
||||
"min_p_sampling",
|
||||
"speculate_get_target_logits",
|
||||
"speculate_insert_first_token",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
|
||||
def speculate_get_target_logits(
|
||||
target_logits: paddle.Tensor,
|
||||
logits: paddle.Tensor,
|
||||
cu_batch_token_offset: paddle.Tensor,
|
||||
ori_cu_batch_token_offset: paddle.Tensor,
|
||||
seq_lens_this_time: paddle.Tensor,
|
||||
seq_lens_encoder: paddle.Tensor,
|
||||
accept_num: paddle.Tensor,
|
||||
):
|
||||
"""
|
||||
speculate_get_target_logits
|
||||
"""
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import speculate_get_target_logits
|
||||
|
||||
speculate_get_target_logits(
|
||||
target_logits,
|
||||
logits,
|
||||
cu_batch_token_offset,
|
||||
ori_cu_batch_token_offset,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
accept_num,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def speculate_insert_first_token(
|
||||
token_ids: paddle.Tensor,
|
||||
accept_tokens: paddle.Tensor,
|
||||
next_tokens: paddle.Tensor,
|
||||
cu_next_token_offset: paddle.Tensor,
|
||||
cu_batch_token_offset: paddle.Tensor,
|
||||
seq_lens_this_time: paddle.Tensor,
|
||||
seq_lens_encoder: paddle.Tensor,
|
||||
):
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import speculate_insert_first_token
|
||||
|
||||
speculate_insert_first_token(
|
||||
token_ids,
|
||||
accept_tokens,
|
||||
next_tokens,
|
||||
cu_next_token_offset,
|
||||
cu_batch_token_offset,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
@@ -32,6 +32,8 @@ from fastdeploy.model_executor.layers.sample.ops import (
|
||||
apply_penalty_multi_scores,
|
||||
apply_speculative_penalty_multi_scores,
|
||||
min_p_sampling,
|
||||
speculate_get_target_logits,
|
||||
speculate_insert_first_token,
|
||||
top_k_top_p_sampling,
|
||||
)
|
||||
from fastdeploy.platforms import current_platform
|
||||
@@ -455,6 +457,98 @@ class SpeculativeSampler(nn.Layer):
|
||||
"""apply logits processor to sampler"""
|
||||
pass
|
||||
|
||||
def compute_logprobs(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> paddle.Tensor:
|
||||
"""compute logprobs"""
|
||||
share_inputs = sampling_metadata.share_inputs
|
||||
last_logits = logits
|
||||
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
|
||||
batch_token_num = share_inputs["batch_token_num"][:real_bsz]
|
||||
|
||||
temp_scaled_logprobs = sampling_metadata.temp_scaled_logprobs
|
||||
top_p_normalized_logprobs = sampling_metadata.top_p_normalized_logprobs
|
||||
if temp_scaled_logprobs is not None:
|
||||
real_bsz_temp_scaled = temp_scaled_logprobs[:real_bsz]
|
||||
temperature = sampling_metadata.temperature[:real_bsz]
|
||||
real_bsz_temp_scaled = (
|
||||
real_bsz_temp_scaled.astype("int32").squeeze(1).repeat_interleave(batch_token_num).astype("bool")
|
||||
)
|
||||
temperature = temperature.squeeze(1).repeat_interleave(batch_token_num)
|
||||
temp_temperature = paddle.where(
|
||||
real_bsz_temp_scaled, temperature, paddle.ones_like(temperature)
|
||||
).unsqueeze(1)
|
||||
last_logits = last_logits / temp_temperature
|
||||
|
||||
last_logprobs = F.log_softmax(last_logits, axis=-1)
|
||||
top_p_logprob = None
|
||||
top_p_token_mask = None
|
||||
|
||||
if top_p_normalized_logprobs is not None and share_inputs is not None:
|
||||
real_token_top_p = (
|
||||
sampling_metadata.top_p[:real_bsz].squeeze(1).repeat_interleave(batch_token_num).unsqueeze(1)
|
||||
)
|
||||
top_p_normalized_logprobs = (
|
||||
top_p_normalized_logprobs[:real_bsz]
|
||||
.astype("int32")
|
||||
.squeeze(1)
|
||||
.repeat_interleave(batch_token_num)
|
||||
.astype("bool")
|
||||
.unsqueeze(1)
|
||||
)
|
||||
top_p_token_mask = paddle.logical_and(top_p_normalized_logprobs, real_token_top_p != 1.0)
|
||||
if top_p_token_mask.any():
|
||||
probs = F.softmax(last_logits, axis=-1)
|
||||
probs = top_p_normalize_probs_paddle(probs, real_token_top_p)
|
||||
top_p_logprob = paddle.log(probs)
|
||||
if top_p_logprob is not None:
|
||||
last_logprobs = paddle.where(top_p_token_mask, top_p_logprob, last_logprobs)
|
||||
return last_logprobs
|
||||
|
||||
def gather_logprobs(
|
||||
self,
|
||||
logprobs: paddle.Tensor,
|
||||
num_logprobs: int,
|
||||
token_ids: paddle.Tensor,
|
||||
) -> LogprobsTensors:
|
||||
"""
|
||||
Gather logprobs for topk and sampled/prompt token.
|
||||
Args:
|
||||
logprobs: (num tokens) x (vocab) tensor
|
||||
num_logprobs: minimum number of logprobs to
|
||||
retain per token
|
||||
token_ids: prompt tokens (if prompt logprobs)
|
||||
or sampled tokens (if sampled
|
||||
logprobs); 1D token ID tensor
|
||||
with (num tokens) elements
|
||||
Must be int64.
|
||||
Returns:
|
||||
Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
|
||||
Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
|
||||
Sampled token rank tensor, (num tokens)
|
||||
"""
|
||||
assert token_ids.dtype == paddle.int64
|
||||
token_ids = token_ids.unsqueeze(1)
|
||||
logprobs.clip_(min=paddle.finfo(logprobs.dtype).min)
|
||||
# Get with the logprob of the prompt or sampled token.
|
||||
token_logprobs = paddle.take_along_axis(logprobs, token_ids, axis=-1)
|
||||
|
||||
# Compute the ranks of the actual token.
|
||||
token_ranks = (logprobs >= token_logprobs).sum(-1)
|
||||
|
||||
if num_logprobs >= 1:
|
||||
# Find the topK values.
|
||||
topk_logprobs, topk_indices = paddle.topk(logprobs, num_logprobs, axis=-1)
|
||||
indices = paddle.concat([token_ids, topk_indices], axis=1)
|
||||
top_logprobs = paddle.concat([token_logprobs, topk_logprobs], axis=1)
|
||||
else:
|
||||
indices = token_ids
|
||||
top_logprobs = token_logprobs
|
||||
|
||||
return LogprobsTensors(indices, top_logprobs, token_ranks)
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
@@ -521,7 +615,56 @@ class SpeculativeSampler(nn.Layer):
|
||||
accept_all_drafts,
|
||||
)
|
||||
|
||||
return None
|
||||
num_logprobs = sampling_metadata.max_num_logprobs
|
||||
batch_token_num = None
|
||||
if num_logprobs is not None:
|
||||
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
|
||||
batch_token_num = paddle.where(
|
||||
share_inputs["seq_lens_encoder"][:real_bsz] != 0,
|
||||
paddle.ones_like(share_inputs["seq_lens_encoder"][:real_bsz]),
|
||||
share_inputs["accept_num"][:real_bsz].unsqueeze(1),
|
||||
).squeeze(1)
|
||||
share_inputs["batch_token_num"] = batch_token_num
|
||||
ori_cu_batch_token_offset = paddle.concat([paddle.to_tensor([0]), paddle.cumsum(batch_token_num)]).astype(
|
||||
"int32"
|
||||
)
|
||||
cu_batch_token_offset = paddle.concat(
|
||||
[paddle.to_tensor([0]), paddle.cumsum(share_inputs["accept_num"][:real_bsz])]
|
||||
).astype("int32")
|
||||
share_inputs["cu_batch_token_offset"] = cu_batch_token_offset
|
||||
target_logtis = paddle.empty(
|
||||
[share_inputs["accept_num"][:real_bsz].sum(), logits.shape[1]], dtype=logits.dtype
|
||||
)
|
||||
speculate_get_target_logits(
|
||||
target_logtis,
|
||||
logits,
|
||||
cu_batch_token_offset,
|
||||
ori_cu_batch_token_offset,
|
||||
share_inputs["seq_lens_this_time"],
|
||||
share_inputs["seq_lens_encoder"],
|
||||
share_inputs["accept_num"],
|
||||
)
|
||||
raw_logprobs = self.compute_logprobs(target_logtis, sampling_metadata)
|
||||
|
||||
logprobs_tensors = None
|
||||
token_ids = share_inputs["accept_tokens"]
|
||||
if num_logprobs is not None:
|
||||
token_ids = paddle.concat(
|
||||
[
|
||||
share_inputs["accept_tokens"][i, : share_inputs["accept_num"][i]]
|
||||
for i in range(share_inputs["accept_num"][:real_bsz].shape[0])
|
||||
]
|
||||
)
|
||||
logprobs_tensors = self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=token_ids)
|
||||
|
||||
sampler_output = SamplerOutput(
|
||||
sampled_token_ids=token_ids,
|
||||
logprobs_tensors=logprobs_tensors,
|
||||
token_num_per_batch=batch_token_num,
|
||||
cu_batch_token_offset=share_inputs["cu_batch_token_offset"],
|
||||
)
|
||||
|
||||
return sampler_output
|
||||
|
||||
|
||||
class MTPSampler(nn.Layer):
|
||||
@@ -556,6 +699,103 @@ class MTPSampler(nn.Layer):
|
||||
"""post process after running"""
|
||||
pass
|
||||
|
||||
def compute_logprobs(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> paddle.Tensor:
|
||||
"""compute logprobs"""
|
||||
share_inputs = sampling_metadata.share_inputs
|
||||
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
|
||||
last_logits = logits
|
||||
temp_scaled_logprobs = sampling_metadata.temp_scaled_logprobs
|
||||
top_p_normalized_logprobs = sampling_metadata.top_p_normalized_logprobs
|
||||
if temp_scaled_logprobs is not None:
|
||||
real_bsz_temp_scaled = temp_scaled_logprobs[:real_bsz]
|
||||
temperature = sampling_metadata.temperature[:real_bsz]
|
||||
real_bsz_temp_scaled = (
|
||||
real_bsz_temp_scaled.astype("int32")
|
||||
.squeeze(1)
|
||||
.repeat_interleave(share_inputs["batch_token_num"][:real_bsz])
|
||||
.astype("bool")
|
||||
)
|
||||
temperature = temperature.squeeze(1).repeat_interleave(share_inputs["batch_token_num"][:real_bsz])
|
||||
temp_temperature = paddle.where(
|
||||
real_bsz_temp_scaled, temperature, paddle.ones_like(temperature)
|
||||
).unsqueeze(1)
|
||||
last_logits = last_logits / temp_temperature
|
||||
|
||||
last_logprobs = F.log_softmax(last_logits, axis=-1)
|
||||
top_p_logprob = None
|
||||
top_p_token_mask = None
|
||||
|
||||
if top_p_normalized_logprobs is not None and share_inputs is not None:
|
||||
real_token_top_p = (
|
||||
sampling_metadata.top_p[:real_bsz]
|
||||
.squeeze(1)
|
||||
.repeat_interleave(share_inputs["batch_token_num"][:real_bsz])
|
||||
.unsqueeze(1)
|
||||
)
|
||||
top_p_normalized_logprobs = (
|
||||
top_p_normalized_logprobs[:real_bsz]
|
||||
.astype("int32")
|
||||
.squeeze(1)
|
||||
.repeat_interleave(share_inputs["batch_token_num"][:real_bsz])
|
||||
.astype("bool")
|
||||
.unsqueeze(1)
|
||||
)
|
||||
top_p_token_mask = paddle.logical_and(top_p_normalized_logprobs, real_token_top_p != 1.0)
|
||||
|
||||
if top_p_token_mask.any():
|
||||
probs = F.softmax(last_logits, axis=-1)
|
||||
probs = top_p_normalize_probs_paddle(probs, real_token_top_p)
|
||||
top_p_logprob = paddle.log(probs)
|
||||
if top_p_logprob is not None:
|
||||
last_logprobs = paddle.where(top_p_token_mask, top_p_logprob, last_logprobs)
|
||||
return last_logprobs
|
||||
|
||||
def gather_logprobs(
|
||||
self,
|
||||
logprobs: paddle.Tensor,
|
||||
num_logprobs: int,
|
||||
token_ids: paddle.Tensor,
|
||||
) -> LogprobsTensors:
|
||||
"""
|
||||
Gather logprobs for topk and sampled/prompt token.
|
||||
Args:
|
||||
logprobs: (num tokens) x (vocab) tensor
|
||||
num_logprobs: minimum number of logprobs to
|
||||
retain per token
|
||||
token_ids: prompt tokens (if prompt logprobs)
|
||||
or sampled tokens (if sampled
|
||||
logprobs); 1D token ID tensor
|
||||
with (num tokens) elements
|
||||
Must be int64.
|
||||
Returns:
|
||||
Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
|
||||
Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
|
||||
Sampled token rank tensor, (num tokens)
|
||||
"""
|
||||
assert token_ids.dtype == paddle.int64
|
||||
token_ids = token_ids.unsqueeze(1)
|
||||
logprobs.clip_(min=paddle.finfo(logprobs.dtype).min)
|
||||
# Get with the logprob of the prompt or sampled token.
|
||||
token_logprobs = paddle.take_along_axis(logprobs, token_ids, axis=-1)
|
||||
|
||||
# Compute the ranks of the actual token.
|
||||
token_ranks = (logprobs >= token_logprobs).sum(-1)
|
||||
|
||||
if num_logprobs >= 1:
|
||||
# Find the topK values.
|
||||
topk_logprobs, topk_indices = paddle.topk(logprobs, num_logprobs, axis=-1)
|
||||
indices = paddle.concat([token_ids, topk_indices], axis=1)
|
||||
top_logprobs = paddle.concat([token_logprobs, topk_logprobs], axis=1)
|
||||
else:
|
||||
indices = token_ids
|
||||
top_logprobs = token_logprobs
|
||||
|
||||
return LogprobsTensors(indices, top_logprobs, token_ranks)
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
@@ -564,6 +804,12 @@ class MTPSampler(nn.Layer):
|
||||
share_inputs: List[paddle.Tensor],
|
||||
) -> paddle.Tensor:
|
||||
""" """
|
||||
num_logprobs = sampling_metadata.max_num_logprobs
|
||||
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
|
||||
if num_logprobs is not None and share_inputs["substep"] == 0:
|
||||
real_token_num = share_inputs["batch_token_num"][:real_bsz].sum()
|
||||
raw_logprobs = self.compute_logprobs(share_inputs["draft_logits"][:real_token_num, :], sampling_metadata)
|
||||
|
||||
logits = apply_speculative_penalty_multi_scores(
|
||||
sampling_metadata.pre_token_ids,
|
||||
logits,
|
||||
@@ -585,4 +831,27 @@ class MTPSampler(nn.Layer):
|
||||
_, next_tokens = top_k_top_p_sampling(
|
||||
probs, sampling_metadata.top_p, sampling_metadata.top_k, sampling_metadata.top_k_list
|
||||
)
|
||||
return next_tokens
|
||||
|
||||
token_ids = None
|
||||
logprobs_tensors = None
|
||||
if num_logprobs is not None and share_inputs["substep"] == 0:
|
||||
token_ids = paddle.empty(real_token_num, dtype="int64")
|
||||
speculate_insert_first_token(
|
||||
token_ids,
|
||||
share_inputs["accept_tokens"],
|
||||
next_tokens,
|
||||
share_inputs["cu_next_token_offset"],
|
||||
share_inputs["cu_batch_token_offset"],
|
||||
share_inputs["seq_lens_this_time"],
|
||||
share_inputs["seq_lens_encoder"],
|
||||
)
|
||||
|
||||
logprobs_tensors = self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=token_ids)
|
||||
|
||||
sampler_output = SamplerOutput(
|
||||
sampled_token_ids=token_ids,
|
||||
logprobs_tensors=logprobs_tensors,
|
||||
token_num_per_batch=share_inputs["batch_token_num"][:real_bsz],
|
||||
cu_batch_token_offset=share_inputs["cu_batch_token_offset"],
|
||||
)
|
||||
return next_tokens, sampler_output
|
||||
|
||||
@@ -68,6 +68,7 @@ else:
|
||||
speculate_get_padding_offset,
|
||||
speculate_get_seq_lens_output,
|
||||
speculate_save_output,
|
||||
speculate_save_output_topk,
|
||||
speculate_set_value_by_flags_and_idx,
|
||||
speculate_step_paddle,
|
||||
speculate_step_system_cache,
|
||||
@@ -334,7 +335,10 @@ def post_process_normal(
|
||||
|
||||
|
||||
def post_process_specualate(
|
||||
model_output: ModelOutputData, save_each_rank: bool = False, skip_save_output: bool = False
|
||||
sampler_output: SamplerOutput,
|
||||
model_output: ModelOutputData,
|
||||
save_each_rank: bool = False,
|
||||
skip_save_output: bool = False,
|
||||
):
|
||||
""""""
|
||||
speculate_update(
|
||||
@@ -352,16 +356,29 @@ def post_process_specualate(
|
||||
)
|
||||
|
||||
if not skip_save_output:
|
||||
speculate_save_output(
|
||||
model_output.accept_tokens,
|
||||
model_output.accept_num,
|
||||
model_output.not_need_stop,
|
||||
model_output.seq_lens_decoder,
|
||||
model_output.prompt_lens,
|
||||
model_output.mp_rank,
|
||||
save_each_rank,
|
||||
envs.ENABLE_V1_KVCACHE_SCHEDULER,
|
||||
)
|
||||
if sampler_output.logprobs_tensors is None:
|
||||
speculate_save_output(
|
||||
model_output.accept_tokens,
|
||||
model_output.accept_num,
|
||||
model_output.not_need_stop,
|
||||
model_output.seq_lens_decoder,
|
||||
model_output.prompt_lens,
|
||||
model_output.mp_rank,
|
||||
save_each_rank,
|
||||
envs.ENABLE_V1_KVCACHE_SCHEDULER,
|
||||
)
|
||||
else:
|
||||
speculate_save_output_topk(
|
||||
sampler_output.sampled_token_ids,
|
||||
sampler_output.logprobs_tensors.logprob_token_ids,
|
||||
sampler_output.logprobs_tensors.logprobs,
|
||||
sampler_output.logprobs_tensors.selected_token_ranks,
|
||||
sampler_output.token_num_per_batch,
|
||||
sampler_output.cu_batch_token_offset,
|
||||
model_output.not_need_stop,
|
||||
3, # mtype
|
||||
model_output.mp_rank,
|
||||
)
|
||||
|
||||
# Update pre_ids through accept tokens
|
||||
|
||||
@@ -389,7 +406,7 @@ def post_process(
|
||||
) -> None:
|
||||
"""Post-processing steps after completing a single token generation."""
|
||||
if speculative_decoding:
|
||||
post_process_specualate(model_output, save_each_rank, skip_save_output)
|
||||
post_process_specualate(sampler_output, model_output, save_each_rank, skip_save_output)
|
||||
else:
|
||||
post_process_normal(
|
||||
sampler_output,
|
||||
@@ -597,6 +614,8 @@ def rebuild_padding(
|
||||
seq_lens_encoder: paddle.Tensor,
|
||||
output_padding_offset: Optional[paddle.Tensor] = None,
|
||||
max_input_length: Optional[int] = None,
|
||||
first_token_out: Optional[paddle.Tensor] = None,
|
||||
enable_logprob: Optional[bool] = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@@ -612,7 +631,9 @@ def rebuild_padding(
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
first_token_out,
|
||||
max_input_length,
|
||||
enable_logprob,
|
||||
)
|
||||
elif current_platform.is_dcu():
|
||||
from fastdeploy.model_executor.ops.gpu import rebuild_padding
|
||||
|
||||
@@ -44,6 +44,8 @@ from fastdeploy.model_executor.ops.gpu import (
|
||||
mtp_save_first_token,
|
||||
mtp_step_paddle,
|
||||
share_external_data,
|
||||
speculate_get_logits,
|
||||
speculate_save_output_topk,
|
||||
)
|
||||
from fastdeploy.model_executor.pre_and_post_process import pre_process, rebuild_padding
|
||||
|
||||
@@ -72,6 +74,7 @@ class MTPProposer(Proposer):
|
||||
self.target_model_inputs = target_model_inputs
|
||||
self.mtp_strategy = self.speculative_config.mtp_strategy
|
||||
self.hybrid_mode = self.mtp_strategy == "with_ngram" and self.max_draft_token_num > self.num_model_steps
|
||||
self.enable_logprob = self.model_config.enable_logprob
|
||||
|
||||
# [mixed, prefill, decoder]
|
||||
self.role = "mixed"
|
||||
@@ -405,6 +408,22 @@ class MTPProposer(Proposer):
|
||||
self.target_model_inputs["seq_lens_this_time"], fill_value=-1, dtype="int32"
|
||||
)
|
||||
self.input_ids_len = paddle.zeros(shape=[self.max_num_seqs, 1], dtype="int64").cpu()
|
||||
self.model_inputs["temp_scaled_logprobs"] = self.target_model_inputs["temp_scaled_logprobs"]
|
||||
self.model_inputs["top_p_normalized_logprobs"] = self.target_model_inputs["top_p_normalized_logprobs"]
|
||||
self.model_inputs["accept_num"] = self.target_model_inputs["accept_num"]
|
||||
self.model_inputs["accept_tokens"] = self.target_model_inputs["accept_tokens"]
|
||||
self.model_inputs["draft_logits"] = self.target_model_inputs["draft_logits"]
|
||||
self.model_inputs["first_token_hidden_states"] = paddle.full(
|
||||
[self.max_num_seqs, self.model_config.hidden_size], -1
|
||||
)
|
||||
self.model_inputs["batch_token_num"] = paddle.full(shape=[self.max_num_seqs], fill_value=0, dtype="int32")
|
||||
self.model_inputs["next_token_num"] = paddle.full(shape=[self.max_num_seqs], fill_value=0, dtype="int32")
|
||||
self.model_inputs["cu_batch_token_offset"] = paddle.full_like(
|
||||
self.target_model_inputs["cu_batch_token_offset"], fill_value=0, dtype="int32"
|
||||
)
|
||||
self.model_inputs["cu_next_token_offset"] = paddle.full(
|
||||
shape=[self.max_num_seqs + 1], fill_value=0, dtype="int32"
|
||||
)
|
||||
|
||||
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int):
|
||||
|
||||
@@ -734,6 +753,10 @@ class MTPProposer(Proposer):
|
||||
min_dec_lens=self.model_inputs["min_dec_len"],
|
||||
bad_words_token_ids=self.model_inputs["bad_tokens"],
|
||||
eos_token_ids=self.model_inputs["eos_token_id"],
|
||||
max_num_logprobs=20 if self.enable_logprob else None,
|
||||
temp_scaled_logprobs=self.model_inputs["temp_scaled_logprobs"],
|
||||
top_p_normalized_logprobs=self.model_inputs["top_p_normalized_logprobs"],
|
||||
share_inputs=self.model_inputs,
|
||||
)
|
||||
|
||||
if self.num_model_steps > 1:
|
||||
@@ -754,18 +777,48 @@ class MTPProposer(Proposer):
|
||||
self.model_inputs["seq_lens_encoder"],
|
||||
self.model_inputs["output_padding_offset"],
|
||||
self.model_config.max_model_len,
|
||||
self.model_inputs["first_token_hidden_states"],
|
||||
self.enable_logprob if substep == 0 else False,
|
||||
)
|
||||
|
||||
# 4. Compute logits, Sample
|
||||
logits = self.model.compute_logits(hidden_states)
|
||||
if self.enable_logprob and substep == 0:
|
||||
first_token_logits = self.model.compute_logits(self.model_inputs["first_token_hidden_states"])
|
||||
|
||||
sampled_token_ids = self.sampler(
|
||||
speculate_get_logits(
|
||||
self.model_inputs["draft_logits"],
|
||||
self.model_inputs["next_token_num"],
|
||||
self.model_inputs["batch_token_num"],
|
||||
self.model_inputs["cu_next_token_offset"],
|
||||
self.model_inputs["cu_batch_token_offset"],
|
||||
logits,
|
||||
first_token_logits,
|
||||
self.model_inputs["seq_lens_this_time"],
|
||||
self.model_inputs["seq_lens_encoder"],
|
||||
)
|
||||
|
||||
sampled_token_ids, sampler_output = self.sampler(
|
||||
logits,
|
||||
self.sampling_metadata,
|
||||
self.max_model_len,
|
||||
self.model_inputs,
|
||||
)
|
||||
|
||||
if substep == 0 and sampler_output.logprobs_tensors is not None:
|
||||
real_bsz = self.model_inputs["seq_lens_this_time"].shape[0]
|
||||
speculate_save_output_topk(
|
||||
sampler_output.sampled_token_ids,
|
||||
sampler_output.logprobs_tensors.logprob_token_ids,
|
||||
sampler_output.logprobs_tensors.logprobs,
|
||||
sampler_output.logprobs_tensors.selected_token_ranks,
|
||||
self.model_inputs["batch_token_num"][:real_bsz],
|
||||
self.model_inputs["cu_batch_token_offset"][:real_bsz],
|
||||
self.model_inputs["not_need_stop"],
|
||||
4, # mtype
|
||||
self.local_rank,
|
||||
)
|
||||
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampled_token_ids, 0)
|
||||
|
||||
|
||||
@@ -1007,6 +1007,15 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
dtype="int64",
|
||||
)
|
||||
self.share_inputs["step_seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
# For MTP Logprob
|
||||
self.share_inputs["draft_logits"] = paddle.full(
|
||||
[max_num_seqs * (self.speculative_config.num_speculative_tokens + 1), self.model_config.vocab_size],
|
||||
-1,
|
||||
dtype="float32",
|
||||
)
|
||||
self.share_inputs["cu_batch_token_offset"] = paddle.full(
|
||||
shape=[max_num_seqs + 1], fill_value=0, dtype="int32"
|
||||
)
|
||||
|
||||
if self.enable_mm:
|
||||
head_dim = self.model_config.head_dim
|
||||
@@ -1869,13 +1878,12 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
else:
|
||||
self.sampler(
|
||||
sampler_output = self.sampler(
|
||||
logits,
|
||||
self.sampling_metadata,
|
||||
self.model_config.max_model_len,
|
||||
self.share_inputs,
|
||||
)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"],
|
||||
|
||||
@@ -106,6 +106,8 @@ class SamplerOutput:
|
||||
# PLACEHOLDER_TOKEN_ID (-1 by default) is used for padding.
|
||||
sampled_token_ids: paddle.Tensor
|
||||
logprobs_tensors: Optional[LogprobsTensors]
|
||||
token_num_per_batch: Optional[paddle.Tensor] = None
|
||||
cu_batch_token_offset: Optional[paddle.Tensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -143,7 +143,9 @@ class TestRebuildPadding(unittest.TestCase):
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
None,
|
||||
None,
|
||||
max_input_length,
|
||||
False,
|
||||
)
|
||||
np.testing.assert_allclose(out_no_offset.numpy(), out_no_offset_ref)
|
||||
|
||||
@@ -191,7 +193,9 @@ class TestRebuildPadding(unittest.TestCase):
|
||||
seq_lens_decoder,
|
||||
seq_lens_encoder,
|
||||
output_padding_offset,
|
||||
None,
|
||||
max_input_length,
|
||||
False,
|
||||
)
|
||||
np.testing.assert_allclose(out_with_offset.numpy(), out_with_offset_ref)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user