[Feat] ernie4_5_vl_moe support CudaGraph (#3226)

* delete dynamic control flow for decode

* coda-style

* fix scatter/gather typos and use input stream instead default stream

* support 0-Size Tensor

* update runner and model

* using static mem address as input

* fix mem leak

* refine code

* update mm_buffer

* fix typo

* fix buffersize

* fix unk token

* refine code

* refine

* support other arch

* open cudagraph in vlci

* fix

* update

* update

* update

* fix cmd

* update

---------

Co-authored-by: aquagull <hongyuh@qq.com>
Co-authored-by: Yuanle Liu <yuanlehome@163.com>
This commit is contained in:
Ayakouji
2025-09-10 13:11:57 +08:00
committed by GitHub
parent 9d0074a91a
commit 453487d5b0
9 changed files with 207 additions and 98 deletions

View File

@@ -414,8 +414,8 @@ std::vector<paddle::Tensor> MoEDeepGEMMDePermute(
const paddle::Tensor &topk_idx, const paddle::Tensor &topk_weights); const paddle::Tensor &topk_idx, const paddle::Tensor &topk_weights);
void TextImageIndexOut(const paddle::Tensor &token_type_ids, void TextImageIndexOut(const paddle::Tensor &token_type_ids,
const paddle::Tensor &text_input, paddle::Tensor &text_input,
const paddle::Tensor &image_input); paddle::Tensor &image_input);
void TextImageGatherScatter(paddle::Tensor &input, paddle::Tensor &text_input, void TextImageGatherScatter(paddle::Tensor &input, paddle::Tensor &text_input,
paddle::Tensor &image_input, paddle::Tensor &image_input,

View File

@@ -132,7 +132,7 @@ std::vector<paddle::DataType> GetPaddingOffsetInferDtype(
} }
PD_BUILD_STATIC_OP(get_padding_offset) PD_BUILD_STATIC_OP(get_padding_offset)
.Inputs({"input_ids", "token_num", "cum_offsets", "seq_len"}) .Inputs({"input_ids", "cum_offsets", "token_num", "seq_len"})
.Outputs({"x_remove_padding", .Outputs({"x_remove_padding",
"batch_id_per_token", "batch_id_per_token",
"cu_seqlens_q", "cu_seqlens_q",

View File

@@ -36,6 +36,9 @@ void MoeDispatchKernel(
paddle::Tensor *topk_idx, paddle::Tensor *expert_idx_per_token) { paddle::Tensor *topk_idx, paddle::Tensor *expert_idx_per_token) {
using namespace phi; using namespace phi;
if (num_rows == 0){
return;
}
typedef PDTraits<T> traits_; typedef PDTraits<T> traits_;
typedef typename traits_::DataType DataType_; typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t; typedef typename traits_::data_t data_t;
@@ -185,6 +188,15 @@ std::vector<paddle::Tensor> MoeExpertDispatch(
auto expert_idx_per_token = auto expert_idx_per_token =
GetEmptyTensor({num_rows * moe_topk}, paddle::DataType::INT32, place); GetEmptyTensor({num_rows * moe_topk}, paddle::DataType::INT32, place);
if (token_rows == 0){
return {permute_input,
tokens_expert_prefix_sum,
permute_indices_per_token,
topk_weight,
topk_idx,
expert_idx_per_token};
}
switch (input_type) { switch (input_type) {
case paddle::DataType::BFLOAT16: case paddle::DataType::BFLOAT16:
MoeDispatchKernel<paddle::DataType::BFLOAT16>( MoeDispatchKernel<paddle::DataType::BFLOAT16>(

View File

@@ -412,7 +412,9 @@ const auto t_type = (quant_method == "w4a8") ? up_gate_proj_scale.get().dtype()
(quant_method == "w4afp8") ? paddle::DataType::BFLOAT16 : (quant_method == "w4afp8") ? paddle::DataType::BFLOAT16 :
permute_input.dtype(); permute_input.dtype();
auto ffn_out = paddle::empty_like(permute_input, t_type); auto ffn_out = paddle::empty_like(permute_input, t_type);
if(permute_input.numel() == 0){
return ffn_out;
}
switch (t_type) { switch (t_type) {
case paddle::DataType::BFLOAT16: case paddle::DataType::BFLOAT16:
MoeFFNKernel<paddle::DataType::BFLOAT16>(permute_input, MoeFFNKernel<paddle::DataType::BFLOAT16>(permute_input,

View File

@@ -59,6 +59,10 @@ paddle::Tensor MoeExpertReduceFunc(
auto output = GetEmptyTensor({num_rows, hidden_size}, input_type, place); auto output = GetEmptyTensor({num_rows, hidden_size}, input_type, place);
if(num_rows == 0){
return output;
}
switch (input_type) { switch (input_type) {
case paddle::DataType::BFLOAT16: case paddle::DataType::BFLOAT16:
MoeReduceKernel<paddle::DataType::BFLOAT16>( MoeReduceKernel<paddle::DataType::BFLOAT16>(

View File

@@ -59,7 +59,7 @@ __global__ void text_image_scatter_kernel(
constexpr int HalfVecSize = VecSize / 2; constexpr int HalfVecSize = VecSize / 2;
using T_Vec = AlignedVector<T, VecSize>; using T_Vec = AlignedVector<T, VecSize>;
T_Vec input_ptr_vec; T_Vec input_ptr_vec;
T_Vec text_imgaes_vec; T_Vec text_images_vec;
int64_t global_thread_id = blockIdx.x * blockDim.x + threadIdx.x; int64_t global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
const int64_t step = blockDim.x * gridDim.x * VecSize; const int64_t step = blockDim.x * gridDim.x * VecSize;
@@ -76,16 +76,20 @@ __global__ void text_image_scatter_kernel(
Load<T, VecSize>(input_ptr + input_load_offset, &input_ptr_vec); Load<T, VecSize>(input_ptr + input_load_offset, &input_ptr_vec);
#pragma unroll #pragma unroll
for(int vi = 0; vi < VecSize; ++vi) { for(int vi = 0; vi < VecSize; ++vi) {
text_imgaes_vec[vi] = input_ptr_vec[vi]; text_images_vec[vi] = input_ptr_vec[vi];
} }
if (token_type_ids_num == 0) { if (token_type_ids_num == 0) {
int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset; int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset;
Store<T,VecSize>(text_imgaes_vec, text_gather_ptr + text_load_offset); Store<T,VecSize>(text_images_vec, text_gather_ptr + text_load_offset);
} else if(token_type_ids_num == 1){
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset;
Store<T,VecSize>(text_images_vec, image_gather_ptr + image_load_offset);
} else { } else {
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset; // skip cuda graph padding value
Store<T,VecSize>(text_imgaes_vec, image_gather_ptr + image_load_offset); continue;
} }
} }
} }
@@ -120,9 +124,12 @@ __global__ void text_image_gather_kernel(
int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset; int64_t text_load_offset = text_index[token_idx] * hidden_size + hidden_offset;
Load<T,VecSize>(text_gather_ptr + text_load_offset, &text_imgaes_vec); Load<T,VecSize>(text_gather_ptr + text_load_offset, &text_imgaes_vec);
} else { } else if (token_type_ids_num == 1){
int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset; int64_t image_load_offset = image_index[token_idx] * hidden_size + hidden_offset;
Load<T,VecSize>(image_gather_ptr + image_load_offset, &text_imgaes_vec); Load<T,VecSize>(image_gather_ptr + image_load_offset, &text_imgaes_vec);
} else {
// skip cuda graph padding value
continue;
} }
#pragma unroll #pragma unroll
@@ -154,7 +161,6 @@ void LaunchTextImageGatherScatter(
const int64_t token_num = in_dims[0]; const int64_t token_num = in_dims[0];
const int64_t hidden_size = in_dims[1]; const int64_t hidden_size = in_dims[1];
const int VecSize = 16 / sizeof(data_t); const int VecSize = 16 / sizeof(data_t);
const int64_t tot_element_num = token_num * hidden_size; const int64_t tot_element_num = token_num * hidden_size;
@@ -168,7 +174,7 @@ void LaunchTextImageGatherScatter(
PADDLE_ENFORCE_GPU_SUCCESS(GetGridSize(tot_pack_num, block_size, kNumWaves, &grid_size_x)); PADDLE_ENFORCE_GPU_SUCCESS(GetGridSize(tot_pack_num, block_size, kNumWaves, &grid_size_x));
dim3 grid_dim = dim3(grid_size_x, 1, 1); dim3 grid_dim = dim3(grid_size_x, 1, 1);
if (is_scatter) { if (is_scatter) {
text_image_scatter_kernel<DataType_, 8><<<grid_dim, block_size>>>( text_image_scatter_kernel<DataType_, VecSize><<<grid_dim, block_size, 0, stream>>>(
reinterpret_cast<DataType_*>(input.data<data_t>()), reinterpret_cast<DataType_*>(input.data<data_t>()),
reinterpret_cast<DataType_*>(text_input.data<data_t>()), reinterpret_cast<DataType_*>(text_input.data<data_t>()),
reinterpret_cast<DataType_*>(image_input.data<data_t>()), reinterpret_cast<DataType_*>(image_input.data<data_t>()),
@@ -179,7 +185,7 @@ void LaunchTextImageGatherScatter(
tot_element_num tot_element_num
); );
} else { } else {
text_image_gather_kernel<DataType_, 8><<<grid_dim, block_size>>>( text_image_gather_kernel<DataType_, VecSize><<<grid_dim, block_size, 0, stream>>>(
reinterpret_cast<DataType_*>(input.data<data_t>()), reinterpret_cast<DataType_*>(input.data<data_t>()),
reinterpret_cast<DataType_*>(text_input.data<data_t>()), reinterpret_cast<DataType_*>(text_input.data<data_t>()),
reinterpret_cast<DataType_*>(image_input.data<data_t>()), reinterpret_cast<DataType_*>(image_input.data<data_t>()),

View File

@@ -16,7 +16,7 @@
template <int VecSize> template <int VecSize>
__global__ void text_image_index_out_kernel( __global__ void text_image_index_out_kernel(
int32_t* token_type_ids, const int32_t* token_type_ids,
int32_t* text_index, int32_t* text_index,
int32_t* image_index, int32_t* image_index,
const int64_t token_num const int64_t token_num
@@ -31,23 +31,27 @@ __global__ void text_image_index_out_kernel(
if (token_type_ids[i] == 0) { if (token_type_ids[i] == 0) {
text_index[i] = text_count; text_index[i] = text_count;
text_count += 1; text_count += 1;
} else { } else if (token_type_ids[i] == 1) {
image_index[i] = images_count; image_index[i] = images_count;
images_count += 1; images_count += 1;
} else {
// skip cuda graph padding value
continue;
} }
} }
} }
void TextImageIndexOut( void TextImageIndexOut(
const paddle::Tensor& token_type_ids, const paddle::Tensor& token_type_ids,
const paddle::Tensor& text_index, paddle::Tensor& text_index,
const paddle::Tensor& image_index) { paddle::Tensor& image_index) {
const int64_t token_num = token_type_ids.shape()[0]; const int64_t token_num = token_type_ids.shape()[0];
text_image_index_out_kernel<1><<<1, 1>>>( auto stream = token_type_ids.stream();
const_cast<int32_t*>(token_type_ids.data<int32_t>()), text_image_index_out_kernel<1><<<1, 1, 0, stream>>>(
const_cast<int32_t*>(text_index.data<int32_t>()), token_type_ids.data<int32_t>(),
const_cast<int32_t*>(image_index.data<int32_t>()), text_index.data<int32_t>(),
image_index.data<int32_t>(),
token_num token_num
); );
} }

View File

@@ -99,3 +99,35 @@ class GraphOptWrapper:
fd_config.graph_opt_config.graph_opt_level < 1 fd_config.graph_opt_config.graph_opt_level < 1
), "Currently unable to update weights in static graph mode." ), "Currently unable to update weights in static graph mode."
self.graph_opt_backend.clear_cudagraph_piecewise_backend() self.graph_opt_backend.clear_cudagraph_piecewise_backend()
def cuda_graph_buffers(buffer_meta):
def decorator(cls):
original_init = cls.__init__
def __init__(self, fd_config: FDConfig, **kwargs):
original_init(self, fd_config=fd_config, **kwargs)
def _resolve_path(root, path: str):
cur = root
for p in path.split("."):
cur = getattr(cur, p)
return cur
if not hasattr(self, "_mm_buffers"):
self._mm_buffers = {}
for name, meta in buffer_meta.items():
shape = [_resolve_path(fd_config, s) if isinstance(s, str) else s for s in meta["shape"]]
dtype = meta["dtype"]
if "." in meta["dtype"]:
dtype = _resolve_path(fd_config, meta["dtype"])
self._mm_buffers[name] = paddle.full(
shape=shape,
dtype=dtype,
fill_value=meta.get("value", 0),
)
cls.__init__ = __init__
return cls
return decorator

View File

@@ -32,6 +32,7 @@ from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig from fastdeploy.config import FDConfig
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.graph_optimization.decorator import ( from fastdeploy.model_executor.graph_optimization.decorator import (
cuda_graph_buffers,
support_graph_optimization, support_graph_optimization,
) )
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
@@ -66,12 +67,23 @@ class Ernie4_5_VLAttention(Ernie4_5_Attention):
@dataclass @dataclass
class VLMoEMeta: class VLMoEMeta:
image_input: Optional[paddle.Tensor] = None image_input: paddle.Tensor
text_input: Optional[paddle.Tensor] = None text_input: paddle.Tensor
text_index: Optional[paddle.Tensor] = None text_index: paddle.Tensor
image_index: Optional[paddle.Tensor] = None image_index: paddle.Tensor
token_type_ids: Optional[paddle.Tensor] = None token_type_ids: paddle.Tensor
fake_hidden_states: Optional[paddle.Tensor] = None image_token_num: paddle.Tensor
def __str__(self):
return (
f"VLMoEMeta(\n"
f" image_input: {self.image_input}, pointer: {self.image_input.data_ptr()}\n"
f" text_input: {self.text_input}, pointer: {self.text_input.data_ptr()}\n"
f" text_index: {self.text_index}, pointer: {self.text_index.data_ptr()}\n"
f" image_index: {self.image_index}, pointer: {self.image_index.data_ptr()}\n"
f" token_type_ids: {self.token_type_ids}, pointer: {self.token_type_ids.data_ptr()}\n\n"
f")"
)
class Ernie4_5_VLMoeBlock(nn.Layer): class Ernie4_5_VLMoeBlock(nn.Layer):
@@ -266,7 +278,6 @@ class Ernie4_5_VLMoE(nn.Layer):
def forward(self, hidden_states: paddle.Tensor, vl_moe_meta: VLMoEMeta): def forward(self, hidden_states: paddle.Tensor, vl_moe_meta: VLMoEMeta):
if self.num_shared_experts > 0: if self.num_shared_experts > 0:
shared_experts_out = self.shared_experts(hidden_states) shared_experts_out = self.shared_experts(hidden_states)
if vl_moe_meta.image_input is not None:
text_image_gather_scatter( text_image_gather_scatter(
hidden_states, hidden_states,
vl_moe_meta.text_input, vl_moe_meta.text_input,
@@ -287,10 +298,6 @@ class Ernie4_5_VLMoE(nn.Layer):
vl_moe_meta.image_index, vl_moe_meta.image_index,
False, False,
) )
else:
hidden_states = self.text_fused_moe(hidden_states)
if vl_moe_meta.fake_hidden_states is not None:
self.image_fused_moe(vl_moe_meta.fake_hidden_states)
if self.num_shared_experts > 0: if self.num_shared_experts > 0:
hidden_states += shared_experts_out hidden_states += shared_experts_out
if self.tp_size > 1: if self.tp_size > 1:
@@ -394,6 +401,40 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
return hidden_states, residual return hidden_states, residual
@cuda_graph_buffers(
{
"text_input": {
"shape": ["parallel_config.max_model_len", "model_config.hidden_size"],
"dtype": "model_config.dtype",
"value": 1,
},
"image_input": {
"shape": ["parallel_config.max_model_len", "model_config.hidden_size"],
"dtype": "model_config.dtype",
"value": 1,
},
"text_index": {
"shape": ["parallel_config.max_model_len"],
"dtype": "int32",
"value": 0,
},
"image_index": {
"shape": ["parallel_config.max_model_len"],
"dtype": "int32",
"value": 0,
},
"token_type_ids": {
"shape": ["parallel_config.max_model_len"],
"dtype": "int32",
"value": -1,
},
"image_token_num": {
"shape": [1],
"dtype": "int64",
"value": 0,
},
}
)
@support_graph_optimization @support_graph_optimization
class Ernie4_5_VLModel(nn.Layer): class Ernie4_5_VLModel(nn.Layer):
def __init__( def __init__(
@@ -454,59 +495,46 @@ class Ernie4_5_VLModel(nn.Layer):
logger.info(f"Start load layer {i}") logger.info(f"Start load layer {i}")
self.layers[i].load_state_dict(state_dict) self.layers[i].load_state_dict(state_dict)
def forward( def prepare_vl_moe_meta(
self, self,
ids_remove_padding: paddle.Tensor, ids_remove_padding: paddle.Tensor,
image_features: Optional[paddle.Tensor], ) -> VLMoEMeta:
forward_meta: ForwardMeta,
):
text_input = None
image_input = None
text_index = None
image_index = None
fake_hidden_states = None
hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
token_num, hidden_dim = hidden_states.shape
# -----------------------
image_mask = ids_remove_padding == self.im_patch_id image_mask = ids_remove_padding == self.im_patch_id
token_type_ids = image_mask.cast("int32")
image_token_num = image_mask.sum() image_token_num = image_mask.sum()
token_num = ids_remove_padding.shape[0]
text_token_num = paddle.maximum((token_num - image_token_num), paddle.ones([], dtype="int64")) text_token_num = paddle.maximum((token_num - image_token_num), paddle.ones([], dtype="int64"))
token_type_ids = image_mask.cast("int32") # The scenario requiring padding is CUDA graph, thus we only need to pad the maximum capture size.
if self.fd_config.parallel_config.use_ep is True: self._mm_buffers["token_type_ids"][: self.fd_config.graph_opt_config.max_capture_size].fill_(-1)
fake_hidden_states = paddle.empty( self._mm_buffers["token_type_ids"].copy_(token_type_ids, False)
shape=[0, self.fd_config.model_config.hidden_size], self._mm_buffers["image_token_num"].copy_(image_token_num, False)
dtype=paddle.get_default_dtype(),
)
text_input = fake_hidden_states
if image_token_num > 0: return VLMoEMeta(
hidden_states[image_mask] = image_features.cast(self._dtype) text_input=self._mm_buffers["text_input"][:text_token_num],
text_input = paddle.ones( image_input=self._mm_buffers["image_input"][:image_token_num],
shape=[text_token_num, hidden_dim], text_index=self._mm_buffers["text_index"][:token_num],
dtype=self._dtype, image_index=self._mm_buffers["image_index"][:token_num],
token_type_ids=self._mm_buffers["token_type_ids"][:token_num],
image_token_num=self._mm_buffers["image_token_num"],
) )
image_input = paddle.ones(
shape=[image_token_num, hidden_dim],
dtype=self._dtype,
)
text_index = paddle.zeros_like(image_mask, dtype="int32")
image_index = paddle.zeros_like(image_mask, dtype="int32")
text_image_index_out(token_type_ids, text_index, image_index)
vl_moe_meta = VLMoEMeta( def get_input_embeddings(self, ids_remove_padding: paddle.Tensor) -> paddle.Tensor:
text_input=text_input, return self.embed_tokens(ids_remove_padding=ids_remove_padding)
image_input=image_input,
text_index=text_index,
image_index=image_index,
token_type_ids=token_type_ids,
fake_hidden_states=fake_hidden_states,
)
# -----------------------
def forward(
self,
input_embeddings: paddle.Tensor,
ids_remove_padding: paddle.Tensor,
forward_meta: ForwardMeta,
vl_moe_meta: VLMoEMeta,
):
text_image_index_out(vl_moe_meta.token_type_ids, vl_moe_meta.text_index, vl_moe_meta.image_index)
hidden_states = input_embeddings
residual = None residual = None
for i in range(self.num_layers): for i in range(self.num_layers):
hidden_states, residual = self.layers[i]( hidden_states, residual = self.layers[i](
forward_meta, forward_meta,
@@ -517,17 +545,15 @@ class Ernie4_5_VLModel(nn.Layer):
hidden_states = hidden_states + residual hidden_states = hidden_states + residual
# -----------------------
max_seq_len, max_seq_len_index = paddle.topk(forward_meta.seq_lens_this_time, k=1) max_seq_len, max_seq_len_index = paddle.topk(forward_meta.seq_lens_this_time, k=1)
hidden_states = extract_text_token_output( hidden_states = extract_text_token_output(
max_seq_len, max_seq_len,
max_seq_len_index.cast("int32"), max_seq_len_index.cast("int32"),
image_token_num.cast("int32"), vl_moe_meta.image_token_num.cast("int32"),
forward_meta.seq_lens_this_time, forward_meta.seq_lens_this_time,
forward_meta.cu_seqlens_q, forward_meta.cu_seqlens_q,
hidden_states.cast("float32"), hidden_states.cast("float32"),
).cast(self._dtype) ).cast(self._dtype)
# -----------------------
out = self.norm(hidden_states) out = self.norm(hidden_states)
@@ -552,6 +578,12 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
# ernie # ernie
self.ernie = Ernie4_5_VLModel(fd_config=fd_config) self.ernie = Ernie4_5_VLModel(fd_config=fd_config)
# Persistent buffers for CUDA graphs.
self._input_embeddings = paddle.zeros(
[fd_config.parallel_config.max_model_len, fd_config.model_config.hidden_size],
dtype=fd_config.model_config.dtype,
)
self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.ori_vocab_size = fd_config.model_config.ori_vocab_size
self.lm_head = ParallelLMHead( self.lm_head = ParallelLMHead(
@@ -733,16 +765,33 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
self.ernie.layers[i].mlp.text_fused_moe(fake_hidden_states) self.ernie.layers[i].mlp.text_fused_moe(fake_hidden_states)
self.ernie.layers[i].mlp.image_fused_moe(fake_hidden_states) self.ernie.layers[i].mlp.image_fused_moe(fake_hidden_states)
def get_input_embeddings(
self,
ids_remove_padding: paddle.Tensor,
image_features: Optional[paddle.Tensor] = None,
) -> paddle.Tensor:
input_embeddings = self.ernie.get_input_embeddings(ids_remove_padding=ids_remove_padding)
if image_features is not None and len(image_features) > 0:
input_embeddings[ids_remove_padding == self.ernie.im_patch_id] = image_features.cast(self.ernie._dtype)
return input_embeddings
def forward( def forward(
self, self,
ids_remove_padding: paddle.Tensor, ids_remove_padding: paddle.Tensor,
image_features: Optional[paddle.Tensor], image_features: Optional[paddle.Tensor],
forward_meta: ForwardMeta, forward_meta: ForwardMeta,
): ):
input_embeddings = self.get_input_embeddings(
ids_remove_padding=ids_remove_padding, image_features=image_features
)
self._input_embeddings.copy_(input_embeddings, False)
vl_moe_meta = self.ernie.prepare_vl_moe_meta(ids_remove_padding=ids_remove_padding)
hidden_states = self.ernie( hidden_states = self.ernie(
input_embeddings=self._input_embeddings,
ids_remove_padding=ids_remove_padding, ids_remove_padding=ids_remove_padding,
image_features=image_features,
forward_meta=forward_meta, forward_meta=forward_meta,
vl_moe_meta=vl_moe_meta,
) )
return hidden_states return hidden_states