mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Doc] Update RKNPU2 Docs (#1608)
* update rknpu2 docs * update rknpu2 docs
This commit is contained in:
@@ -10,57 +10,20 @@ Two steps before deployment
|
||||
|
||||
Refer to [RK2 generation NPU deployment repository compilation](../../../../../docs/cn/build_and_install/rknpu2.md)
|
||||
|
||||
## Generate the base directory file
|
||||
|
||||
The routine consists of the following parts
|
||||
```text
|
||||
.
|
||||
├── CMakeLists.txt
|
||||
├── build # Compile folder
|
||||
├── image # Folder to save images
|
||||
├── infer_rkyolo.cc
|
||||
├── model # Folder to save model files
|
||||
└── thirdpartys # Folder to save sdk
|
||||
```
|
||||
|
||||
Generate a directory first
|
||||
```bash
|
||||
mkdir build
|
||||
mkdir images
|
||||
mkdir model
|
||||
mkdir thirdpartys
|
||||
```
|
||||
|
||||
## Compile
|
||||
|
||||
### Compile and copy SDK to the thirdpartys folder
|
||||
|
||||
Refer to [RK2 generation NPU deployment repository compilation](../../../../../docs/cn/build_and_install/rknpu2.md). It will generate fastdeploy-0.0.3 directory in the build directory after compilation. Move it to the thirdpartys directory.
|
||||
|
||||
### Copy model files and configuration files to the model folder
|
||||
In the process of Paddle dynamic graph model -> Paddle static graph model -> ONNX model, the ONNX file and the corresponding yaml configuration file will be generated. Please save the configuration file in the model folder.
|
||||
Copy onverted RKNN model files to model。
|
||||
|
||||
### Prepare test images and image folder
|
||||
```bash
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
cp 000000014439.jpg ./images
|
||||
```
|
||||
|
||||
### Compilation example
|
||||
|
||||
```bash
|
||||
cd build
|
||||
cmake ..
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j8
|
||||
make install
|
||||
./infer_rkyolo /path/to/model 000000014439.jpg
|
||||
```
|
||||
|
||||
## Running routine
|
||||
## common problem
|
||||
|
||||
```bash
|
||||
cd ./build/install
|
||||
./infer_picodet model/ images/000000014439.jpg
|
||||
If you use the YOLOv5 model you have trained, you may encounter the problem of 'segmentation fault' after running the demo of FastDeploy. It is likely that the number of labels is inconsistent. You can use the following solution:
|
||||
|
||||
```c++
|
||||
model.GetPostprocessor().SetClassNum(3);
|
||||
```
|
||||
|
||||
|
||||
|
@@ -18,6 +18,13 @@ make -j8
|
||||
./infer_rkyolo /path/to/model 000000014439.jpg
|
||||
```
|
||||
|
||||
## 常见问题
|
||||
|
||||
如果你使用自己训练的YOLOv5模型,你可能会碰到运行FastDeploy的demo后出现`segmentation fault`的问题,很大概率是label数目不一致,你可以使用以下方案来解决:
|
||||
|
||||
```c++
|
||||
model.GetPostprocessor().SetClassNum(3);
|
||||
```
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
|
Reference in New Issue
Block a user