Merge branch 'develop' of https://github.com/PaddlePaddle/FastDeploy into huawei

This commit is contained in:
yunyaoXYY
2022-12-28 12:57:13 +00:00
84 changed files with 2505 additions and 671 deletions

View File

@@ -12,5 +12,3 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from .server import SimpleServer

View File

@@ -50,6 +50,7 @@ class UIEModel(FastDeployModel):
position_prob=0.5,
max_length=128,
schema=[],
batch_size=64,
runtime_option=RuntimeOption(),
model_format=ModelFormat.PADDLE,
schema_language=SchemaLanguage.ZH):
@@ -63,9 +64,10 @@ class UIEModel(FastDeployModel):
else:
assert "The type of schema should be list or dict."
schema_language = C.text.SchemaLanguage(schema_language)
self._model = C.text.UIEModel(
model_file, params_file, vocab_file, position_prob, max_length,
schema, runtime_option._option, model_format, schema_language)
self._model = C.text.UIEModel(model_file, params_file, vocab_file,
position_prob, max_length, schema,
batch_size, runtime_option._option,
model_format, schema_language)
assert self.initialized, "UIEModel initialize failed."
def set_schema(self, schema):

View File

@@ -42,6 +42,18 @@ class PaddleClasPreprocessor:
"""
return self._preprocessor.use_gpu(gpu_id)
def disable_normalize(self):
"""
This function will disable normalize in preprocessing step.
"""
self._preprocessor.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._preprocessor.disable_permute()
class PaddleClasPostprocessor:
def __init__(self, topk=1):
@@ -78,8 +90,6 @@ class PaddleClasModel(FastDeployModel):
"""
super(PaddleClasModel, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now."
self._model = C.vision.classification.PaddleClasModel(
model_file, params_file, config_file, self._runtime_option,
model_format)

View File

@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
from .contrib.nanodet_plus import NanoDetPlus
from .contrib.yolox import YOLOX
from .contrib.yolov5 import *
from .contrib.fastestdet import *
from .contrib.yolov5lite import YOLOv5Lite
from .contrib.yolov6 import YOLOv6
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT

View File

@@ -0,0 +1,149 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class FastestDetPreprocessor:
def __init__(self):
"""Create a preprocessor for FastestDet
"""
self._preprocessor = C.vision.detection.FastestDetPreprocessor()
def run(self, input_ims):
"""Preprocess input images for FastestDet
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
"""
return self._preprocessor.size
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
class FastestDetPostprocessor:
def __init__(self):
"""Create a postprocessor for FastestDet
"""
self._postprocessor = C.vision.detection.FastestDetPostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for FastestDet
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.65
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.45
"""
return self._postprocessor.nms_threshold
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
class FastestDet(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a FastestDet model exported by FastestDet.
:param model_file: (str)Path of model file, e.g ./FastestDet.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(FastestDet, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
self._model = C.vision.detection.FastestDet(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "FastestDet initialize failed."
def predict(self, input_image):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: DetectionResult
"""
assert input_image is not None, "Input image is None."
return self._model.predict(input_image)
def batch_predict(self, images):
assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get FastestDetPreprocessor object of the loaded model
:return FastestDetPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get FastestDetPostprocessor object of the loaded model
:return FastestDetPostprocessor
"""
return self._model.postprocessor

View File

@@ -3,6 +3,6 @@ requests
tqdm
numpy
opencv-python
fastdeploy-tools==0.0.1
fastdeploy-tools>=0.0.1
pyyaml
fastapi