mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
Validate all backends for detection models and add demo code & docs (#94)
* Validate all backends for detection models and add demo code and doc * Delete .README.md.swp
This commit is contained in:
72
examples/vision/detection/paddledetection/python/README.md
Normal file
72
examples/vision/detection/paddledetection/python/README.md
Normal file
@@ -0,0 +1,72 @@
|
||||
# PaddleDetection Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start/install.md)
|
||||
|
||||
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```
|
||||
#下载PPYOLOE模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd examples/vison/detection/paddledetection/python/
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device gpu
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
## PaddleDetection Python接口
|
||||
|
||||
```
|
||||
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||
```
|
||||
|
||||
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理配置yaml文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式,默认为Paddle
|
||||
|
||||
### predict函数
|
||||
|
||||
PaddleDetection中各个模型,包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN,均提供如下同样的成员函数用于进去图像的检测
|
||||
> ```
|
||||
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [PaddleDetection 模型介绍](..)
|
||||
- [PaddleDetection C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
@@ -0,0 +1,61 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 640, 640])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.FasterRCNN(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,61 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 320, 320])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PicoDet(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,62 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 640, 640])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PPYOLO(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(
|
||||
im, result, score_threshold=0.5, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,61 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 640, 640])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PPYOLOE(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,62 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 608, 608])
|
||||
option.set_trt_input_shape("im_shape", [1, 2])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.YOLOv3(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,61 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="Path of PaddleDetection model directory")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("image", [1, 3, 640, 640])
|
||||
option.set_trt_input_shape("scale_factor", [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PaddleYOLOX(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
Reference in New Issue
Block a user