mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00
[Bugfix] Fix uninitialized decoded_token and add corresponding unit test (#3201)
* Update test_base_chat.py (#3183) * [Bugfix] Fix uninitialized decoded_token and add corresponding unit test. --------- Co-authored-by: Divano <dddivano@outlook.com>
This commit is contained in:
@@ -285,6 +285,10 @@ class LLM:
|
||||
self.llm_engine.add_requests(tasks, current_sampling_params, enable_thinking=enable_thinking)
|
||||
return req_ids
|
||||
|
||||
def _decode_token(self, token_id: int) -> str:
|
||||
"""Decodes a single token ID into its string representation."""
|
||||
return self.llm_engine.data_processor.process_logprob_response([token_id], clean_up_tokenization_spaces=False)
|
||||
|
||||
def _build_sample_logprobs(self, logprobs_lists: LogprobsLists, topk_logprobs: int) -> list[dict[int, Logprob]]:
|
||||
"""
|
||||
Constructs a list of dictionaries mapping token IDs to Logprob objects,
|
||||
@@ -318,8 +322,9 @@ class LLM:
|
||||
sliced_logprobs_lists = logprobs_lists.slice_columns(1, 1 + effective_topk_logprobs)
|
||||
result = []
|
||||
for token_ids, logprobs in zip(sliced_logprobs_lists.logprob_token_ids, sliced_logprobs_lists.logprobs):
|
||||
|
||||
logprob_dict = {
|
||||
token_id: Logprob(logprob=logprob, rank=i + 1, decoded_token=None)
|
||||
token_id: Logprob(logprob=logprob, rank=i + 1, decoded_token=self._decode_token(token_id))
|
||||
for i, (token_id, logprob) in enumerate(zip(token_ids, logprobs))
|
||||
}
|
||||
result.append(logprob_dict)
|
||||
|
221
test/ce/server/test_base_chat.py
Normal file
221
test/ce/server/test_base_chat.py
Normal file
@@ -0,0 +1,221 @@
|
||||
#!/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# @author DDDivano
|
||||
# encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python
|
||||
|
||||
"""
|
||||
some basic check for fd web api
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
from core import TEMPLATE, URL, build_request_payload, send_request
|
||||
|
||||
|
||||
def test_stream_response():
|
||||
data = {
|
||||
"stream": True,
|
||||
"messages": [
|
||||
{"role": "system", "content": "你是一个知识渊博的 AI 助手"},
|
||||
{"role": "user", "content": "讲讲爱因斯坦的相对论"},
|
||||
],
|
||||
"max_tokens": 10,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload, stream=True)
|
||||
|
||||
output = ""
|
||||
for line in resp.iter_lines(decode_unicode=True):
|
||||
if line.strip() == "" or not line.startswith("data: "):
|
||||
continue
|
||||
line = line[len("data: ") :]
|
||||
if line.strip() == "[DONE]":
|
||||
break
|
||||
chunk = json.loads(line)
|
||||
delta = chunk.get("choices", [{}])[0].get("delta", {})
|
||||
output += delta.get("content", "")
|
||||
|
||||
print("Stream输出:", output)
|
||||
assert "相对论" in output or len(output) > 0
|
||||
|
||||
|
||||
def test_system_prompt_effect():
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "system", "content": "请用一句话回答"},
|
||||
{"role": "user", "content": "什么是人工智能?"},
|
||||
],
|
||||
"max_tokens": 30,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload).json()
|
||||
content = resp["choices"][0]["message"]["content"]
|
||||
print("内容输出:", content)
|
||||
assert len(content) < 50
|
||||
|
||||
|
||||
def test_logprobs_enabled():
|
||||
data = {
|
||||
"stream": False,
|
||||
"logprobs": True,
|
||||
"top_logprobs": 5,
|
||||
"messages": [{"role": "user", "content": "非洲的首都是?"}],
|
||||
"max_tokens": 3,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload).json()
|
||||
logprob_data = resp["choices"][0].get("logprobs")
|
||||
print("LogProbs:", logprob_data)
|
||||
assert logprob_data is not None
|
||||
content_logprobs = logprob_data.get("content", [])
|
||||
assert isinstance(content_logprobs, list)
|
||||
assert all("token" in item for item in content_logprobs)
|
||||
|
||||
|
||||
def test_stop_sequence():
|
||||
data = {
|
||||
"stream": False,
|
||||
"stop": ["果冻"],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你要严格按照我接下来的话输出,输出冒号后面的内容,请输出:这是第一段。果冻这是第二段啦啦啦啦啦。",
|
||||
},
|
||||
],
|
||||
"max_tokens": 20,
|
||||
"top_p": 0,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload).json()
|
||||
content = resp["choices"][0]["message"]["content"]
|
||||
print("截断输出:", content)
|
||||
assert "第二段" not in content
|
||||
|
||||
|
||||
def test_sampling_parameters():
|
||||
data = {
|
||||
"stream": False,
|
||||
"temperature": 0,
|
||||
"top_p": 0,
|
||||
"messages": [
|
||||
{"role": "user", "content": "1+1=?,直接回答答案"},
|
||||
],
|
||||
"max_tokens": 50,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload).json()
|
||||
answer = resp["choices"][0]["message"]["content"]
|
||||
print("Sampling输出:", answer)
|
||||
assert any(ans in answer for ans in ["2", "二"])
|
||||
|
||||
|
||||
def test_multi_turn_conversation():
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "user", "content": "牛顿是谁?"},
|
||||
{"role": "assistant", "content": "牛顿是一位物理学家。"},
|
||||
{"role": "user", "content": "他提出了什么理论?"},
|
||||
],
|
||||
"max_tokens": 30,
|
||||
}
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
resp = send_request(URL, payload).json()
|
||||
content = resp["choices"][0]["message"]["content"]
|
||||
print("多轮记忆:", content)
|
||||
assert "三大运动定律" in content or "万有引力" in content
|
||||
|
||||
|
||||
def test_bad_words_filtering():
|
||||
banned_tokens = ["和", "呀"]
|
||||
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
|
||||
{"role": "user", "content": "请输出冒号后面的字: 我爱吃果冻,和苹果,香蕉,和荔枝"},
|
||||
],
|
||||
"top_p": 0,
|
||||
"max_tokens": 69,
|
||||
"bad_words": banned_tokens,
|
||||
}
|
||||
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
response = send_request(URL, payload).json()
|
||||
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
print("生成内容:", content)
|
||||
|
||||
for word in banned_tokens:
|
||||
assert word not in content, f"bad_word '{word}' 不应出现在生成结果中"
|
||||
|
||||
print("test_bad_words_filtering 通过:生成结果未包含被禁词")
|
||||
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
|
||||
{"role": "user", "content": "请输出冒号后面的字,一模一样: 我爱吃果冻,苹果,香蕉,和荔枝呀呀呀"},
|
||||
],
|
||||
"top_p": 0,
|
||||
"max_tokens": 69,
|
||||
# "bad_words": banned_tokens,
|
||||
}
|
||||
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
response = send_request(URL, payload).json()
|
||||
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
print("生成内容:", content)
|
||||
|
||||
for word in banned_tokens:
|
||||
assert word not in content, f"bad_word '{word}' 不应出现在生成结果中"
|
||||
|
||||
print("test_bad_words_filtering 通过:生成结果未包含被禁词")
|
||||
|
||||
|
||||
def test_bad_words_filtering1():
|
||||
banned_tokens = ["和", "呀"]
|
||||
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
|
||||
{"role": "user", "content": "请输出冒号后面的字: 我爱吃果冻,和苹果,香蕉,和荔枝"},
|
||||
],
|
||||
"top_p": 0,
|
||||
"max_tokens": 69,
|
||||
"bad_words": banned_tokens,
|
||||
}
|
||||
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
response = send_request(URL, payload).json()
|
||||
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
print("生成内容:", content)
|
||||
|
||||
for word in banned_tokens:
|
||||
assert word not in content, f"bad_word '{word}' 不应出现在生成结果中"
|
||||
|
||||
print("test_bad_words_filtering 通过:生成结果未包含被禁词")
|
||||
word = "呀呀"
|
||||
data = {
|
||||
"stream": False,
|
||||
"messages": [
|
||||
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
|
||||
{"role": "user", "content": "请输出冒号后面的字,一模一样: 我爱吃果冻,苹果,香蕉,和荔枝呀呀呀"},
|
||||
],
|
||||
"top_p": 0,
|
||||
"max_tokens": 69,
|
||||
}
|
||||
|
||||
payload = build_request_payload(TEMPLATE, data)
|
||||
response = send_request(URL, payload).json()
|
||||
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
print("生成内容:", content)
|
||||
|
||||
assert word in content, f" '{word}' 应出现在生成结果中"
|
||||
|
||||
print("test_bad_words_filtering 通过:生成结果未包含被禁词")
|
78
test/entrypoints/openai/test_build_sample_logprobs.py
Normal file
78
test/entrypoints/openai/test_build_sample_logprobs.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from fastdeploy.entrypoints.llm import LLM
|
||||
from fastdeploy.worker.output import Logprob, LogprobsLists
|
||||
|
||||
|
||||
def get_patch_path(cls, method="__init__"):
|
||||
return f"{cls.__module__}.{cls.__qualname__}.{method}"
|
||||
|
||||
|
||||
class TestBuildSampleLogprobs(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
"""
|
||||
Set up the test environment by creating an instance of the LLM class using Mock.
|
||||
"""
|
||||
patch_llm = get_patch_path(LLM)
|
||||
with patch(patch_llm, return_value=None):
|
||||
self.llm = LLM()
|
||||
# mock d data_processor
|
||||
self.llm.llm_engine = MagicMock()
|
||||
self.llm.llm_engine.data_processor.process_logprob_response.side_effect = (
|
||||
lambda ids, **kwargs: f"token_{ids[0]}"
|
||||
)
|
||||
|
||||
def test_build_sample_logprobs_basic(self):
|
||||
"""
|
||||
Test case for building sample logprobs when `topk_logprobs` is valid.
|
||||
"""
|
||||
logprob_token_ids = [[100, 101, 102]]
|
||||
logprobs = [[-0.1, -0.5, -1.0]]
|
||||
sampled_token_ranks = [0]
|
||||
|
||||
logprobs_lists = LogprobsLists(
|
||||
logprob_token_ids=logprob_token_ids, logprobs=logprobs, sampled_token_ranks=sampled_token_ranks
|
||||
)
|
||||
|
||||
result = self.llm._build_sample_logprobs(logprobs_lists, topk_logprobs=2)
|
||||
|
||||
expected = [
|
||||
{
|
||||
101: Logprob(logprob=-0.5, rank=1, decoded_token="token_101"),
|
||||
102: Logprob(logprob=-1.0, rank=2, decoded_token="token_102"),
|
||||
}
|
||||
]
|
||||
|
||||
self.assertEqual(result, expected)
|
||||
|
||||
def test_build_sample_logprobs_empty_input(self):
|
||||
"""
|
||||
Test case where `logprob_token_ids` is empty.
|
||||
"""
|
||||
logprobs_lists = MagicMock(spec=LogprobsLists)
|
||||
logprobs_lists.logprob_token_ids = []
|
||||
result = self.llm._build_sample_logprobs(logprobs_lists, topk_logprobs=2)
|
||||
self.assertIsNone(result)
|
||||
|
||||
def test_build_sample_logprobs_invalid_topk(self):
|
||||
"""
|
||||
Test case where `topk` value exceeds length of first element in `logprob_token_ids`.
|
||||
"""
|
||||
logprobs_lists = MagicMock(spec=LogprobsLists)
|
||||
logprobs_lists.logprob_token_ids = [[100]]
|
||||
result = self.llm._build_sample_logprobs(logprobs_lists, topk_logprobs=2)
|
||||
self.assertIsNone(result)
|
||||
|
||||
def test_decode_token(self):
|
||||
"""
|
||||
Test case for decoding a single token ID.
|
||||
"""
|
||||
token_id = 123
|
||||
decoded = self.llm._decode_token(token_id)
|
||||
self.assertEqual(decoded, "token_123")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user