mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Excutor] Experiment Feature-Support Prefill in cudagraph (#3459)
* Support prefill in Cudagraph * Refactor GetBlockShapeAndSplitKVBlock Kernel V2 * Refactor GetBlockShapeAndSplitKVBlock Kernel V2.1 * Refactor GetBlockShapeAndSplitKVBlock Kernel V2.2 * Refactor GetBlockShapeAndSplitKVBlock Kernel V2.3 * Refactor GetBlockShapeAndSplitKVBlock Kernel V2.4 * Refactor GetBlockShapeAndSplitKVBlock Kernel V2.5 * Solve problem about encoder_num_blocks_x_cpu * Add early-exit mechanism for attention kernel * fix test case about append-attention * Update testcode, Add annotations to related tensors * move get_input_length_list * solve test_code * Add annotations about early-exit for attention kernel * Add annotations about early-exit for attention kernel2 * solve comment * solve mtp --------- Co-authored-by: RAM <gstian5555@outlook.com>
This commit is contained in:
@@ -81,14 +81,42 @@ class ForwardMeta:
|
||||
attn_mask: Optional[paddle.Tensor] = None
|
||||
# Attention mask offset
|
||||
attn_mask_offsets: Optional[paddle.Tensor] = None
|
||||
|
||||
# A common pattern for launching CUDA kernels is to set the kernel's grids.x dimension
|
||||
# using a `num_blocks` variable, and then map each thread block to a specific batch and
|
||||
# data tile using `batch_ids` and `tile_ids_per_batch`.
|
||||
#
|
||||
# The variable names below follow this pattern, using a common prefix (e.g., `encoder_`, `decoder_`, `kv_`)
|
||||
# for variables that are logically grouped together. The mapping works as follows:
|
||||
#
|
||||
# Usage: `my_kernel<<<grids, ...>>>(..., batch_ids, tile_ids, ...)`
|
||||
# `grids.x` = `num_blocks_cpu`
|
||||
# `batch_id` = `batch_ids[blockIdx.x]`
|
||||
# `tile_id` = `tile_ids[blockIdx.x]`
|
||||
|
||||
# Maps the thread block index (blockIdx.x) to the corresponding batch for the decoder stage in multi_query_append_attention_warp1_4_kernel.
|
||||
# Decoder batch id. Used by attention backend.
|
||||
decoder_batch_ids: Optional[paddle.Tensor] = None
|
||||
# Tile ID for each batch of the decoder. Used by attention backend.
|
||||
# Maps the thread block index (blockIdx.x) to the specific data tile being processed within that batch for the decoder stage in multi_query_append_attention_warp1_4_kernel.
|
||||
decoder_tile_ids_per_batch: Optional[paddle.Tensor] = None
|
||||
# The number of blocks that attention backend can use in decode stage
|
||||
# The number of CUDA blocks to launch in the x-dimension for the multi_query_append_attention_warp1_4_kernel, defining its grids.x.
|
||||
decoder_num_blocks_cpu: Optional[paddle.Tensor] = None
|
||||
# Recorded multiple lengths related to prefill or decode
|
||||
# A tensor that holds multiple lengths related to prefill or decode stages.
|
||||
max_len_tensor_cpu: Optional[paddle.Tensor] = None
|
||||
# Maps the thread block index (blockIdx.x) to the corresponding batch for the encoder stage in multi_query_append_attention_kernel.
|
||||
encoder_batch_ids: Optional[paddle.Tensor] = None
|
||||
# Maps the thread block index (blockIdx.x) to the specific data tile being processed within that batch for the encoder stage in multi_query_append_attention_kernel.
|
||||
encoder_tile_ids_per_batch: Optional[paddle.Tensor] = None
|
||||
# The number of CUDA blocks to launch in the x-dimension for the multi_query_append_attention_kernel, defining its grids.x.
|
||||
encoder_num_blocks_x_cpu: Optional[paddle.Tensor] = None
|
||||
# Maps the thread block index (blockIdx.x) to the corresponding batch for the append_write_cache_kv kernel.
|
||||
kv_batch_ids: Optional[paddle.Tensor] = None
|
||||
# Maps the thread block index (blockIdx.x) to the specific data tile being processed within that batch for the append_write_cache_kv kernel.
|
||||
kv_tile_ids_per_batch: Optional[paddle.Tensor] = None
|
||||
# The number of CUDA blocks to launch in the x-dimension for the append_write_cache_kv kernel, defining its grids.x.
|
||||
kv_num_blocks_x_cpu: Optional[paddle.Tensor] = None
|
||||
# The maximum sequence length of the KV cache, which may represent the current maximum decoder length.
|
||||
max_len_kv_cpu: Optional[paddle.Tensor] = None
|
||||
|
||||
# Sequence length of encoder for ever batch
|
||||
seq_lens_encoder: Optional[paddle.Tensor] = None
|
||||
@@ -133,6 +161,7 @@ class ForwardMeta:
|
||||
"shape": obj.shape,
|
||||
"dtype": str(obj.dtype),
|
||||
"place": str(obj.place),
|
||||
# "content": obj if obj.numel()<10 else "Too big to show"
|
||||
}
|
||||
return tensor_info
|
||||
elif isinstance(obj, (list, tuple)):
|
||||
|
Reference in New Issue
Block a user