[feature][vision] Add YOLOv7 End2End model with TRT NMS (#157)

* [feature][vision] Add YOLOv7 End2End model with TRT NMS

* [docs] update yolov7end2end_trt examples docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
DefTruth
2022-08-30 15:02:48 +08:00
committed by GitHub
parent 30bb233db8
commit 3c1330e896
14 changed files with 902 additions and 2 deletions

View File

@@ -0,0 +1,53 @@
import fastdeploy as fd
import cv2
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of yolov7 end2end onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.detection.YOLOv7End2EndTRT(
args.model, runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")