support v1 loader for machete (#3999)

This commit is contained in:
Sunny-bot1
2025-09-10 10:21:33 +08:00
committed by GitHub
parent b3fac5bde1
commit 3b1da6e4dd
2 changed files with 31 additions and 39 deletions

View File

@@ -226,12 +226,19 @@ class WeightOnlyLinearMethod(QuantMethodBase):
quant_attrs,
)
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
if isinstance(self, MacheteWeightOnlyLinearMethod):
weight_scale_shape = [1, layer.weight_shape[1]]
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
layer.weight_dtype = "int32"
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
@@ -267,17 +274,28 @@ class WeightOnlyLinearMethod(QuantMethodBase):
def process_weights_after_loading(self, layer) -> None:
if not self.quant_config.is_checkpoint_bf16:
return
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
if isinstance(self, MacheteWeightOnlyLinearMethod):
from fastdeploy.model_executor.layers.quantization.ops import (
machete_quantize_and_pack,
)
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=layer.weight,
atype=layer._dtype,
quant_type="uint4b8",
)
else:
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
free_tensor(layer.weight)
layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape,
dtype="int8",
dtype="int8" if not isinstance(self, MacheteWeightOnlyLinearMethod) else "int32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
@@ -368,32 +386,6 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
) -> None:
super().__init__(quant_config)
def create_weights(self, layer, **extra_weight_attrs):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [1, layer.weight_shape[1]]
# layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
layer.weight_dtype = "int32"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_prequanted_weights(self, layer, state_dict) -> None:
pass
@@ -412,7 +404,6 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
def apply(self, layer, x):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
linear_out = machete_wint_mm(