mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-16 13:41:30 +08:00
[Serving] add ppdet serving example (#641)
* serving support ppdet * Update README.md update ppadet/README
This commit is contained in:
@@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("preprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
# self.output_dtype.append(dtype)
|
||||
self.output_dtype.append(output_config["data_type"])
|
||||
print("preprocess output names:", self.output_names)
|
||||
|
||||
# init PaddleClasPreprocess class
|
||||
yaml_path = os.path.abspath(os.path.dirname(
|
||||
__file__)) + "/infer_cfg.yml"
|
||||
self.preprocess_ = fd.vision.detection.PaddleDetPreprocessor(yaml_path)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
data = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[0])
|
||||
data = data.as_numpy()
|
||||
outputs = self.preprocess_.run(data)
|
||||
|
||||
output_tensors = []
|
||||
for idx, name in enumerate(self.output_names):
|
||||
dlpack_tensor = outputs[idx].to_dlpack()
|
||||
output_tensor = pb_utils.Tensor.from_dlpack(name,
|
||||
dlpack_tensor)
|
||||
output_tensors.append(output_tensor)
|
||||
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=output_tensors)
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
Reference in New Issue
Block a user