mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
Move eigen to third party (#282)
* remove useless statement * Add eigen to third_party dir * remove reducdant lines
This commit is contained in:
74
third_party/eigen/unsupported/doc/examples/SYCL/CwiseMul.cpp
vendored
Normal file
74
third_party/eigen/unsupported/doc/examples/SYCL/CwiseMul.cpp
vendored
Normal file
@@ -0,0 +1,74 @@
|
||||
#include <iostream>
|
||||
#define EIGEN_USE_SYCL
|
||||
#include <unsupported/Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::array;
|
||||
using Eigen::SyclDevice;
|
||||
using Eigen::Tensor;
|
||||
using Eigen::TensorMap;
|
||||
|
||||
int main() {
|
||||
using DataType = float;
|
||||
using IndexType = int64_t;
|
||||
constexpr auto DataLayout = Eigen::RowMajor;
|
||||
|
||||
auto devices = Eigen::get_sycl_supported_devices();
|
||||
const auto device_selector = *devices.begin();
|
||||
Eigen::QueueInterface queueInterface(device_selector);
|
||||
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||||
|
||||
// create the tensors to be used in the operation
|
||||
IndexType sizeDim1 = 3;
|
||||
IndexType sizeDim2 = 3;
|
||||
IndexType sizeDim3 = 3;
|
||||
array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||||
|
||||
// initialize the tensors with the data we want manipulate to
|
||||
Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange);
|
||||
Tensor<DataType, 3, DataLayout, IndexType> in2(tensorRange);
|
||||
Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange);
|
||||
|
||||
// set up some random data in the tensors to be multiplied
|
||||
in1 = in1.random();
|
||||
in2 = in2.random();
|
||||
|
||||
// allocate memory for the tensors
|
||||
DataType* gpu_in1_data = static_cast<DataType*>(
|
||||
sycl_device.allocate(in1.size() * sizeof(DataType)));
|
||||
DataType* gpu_in2_data = static_cast<DataType*>(
|
||||
sycl_device.allocate(in2.size() * sizeof(DataType)));
|
||||
DataType* gpu_out_data = static_cast<DataType*>(
|
||||
sycl_device.allocate(out.size() * sizeof(DataType)));
|
||||
|
||||
//
|
||||
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data,
|
||||
tensorRange);
|
||||
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data,
|
||||
tensorRange);
|
||||
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data,
|
||||
tensorRange);
|
||||
|
||||
// copy the memory to the device and do the c=a*b calculation
|
||||
sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),
|
||||
(in1.size()) * sizeof(DataType));
|
||||
sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),
|
||||
(in2.size()) * sizeof(DataType));
|
||||
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
|
||||
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,
|
||||
(out.size()) * sizeof(DataType));
|
||||
sycl_device.synchronize();
|
||||
|
||||
// print out the results
|
||||
for (IndexType i = 0; i < sizeDim1; ++i) {
|
||||
for (IndexType j = 0; j < sizeDim2; ++j) {
|
||||
for (IndexType k = 0; k < sizeDim3; ++k) {
|
||||
std::cout << "device_out"
|
||||
<< "(" << i << ", " << j << ", " << k
|
||||
<< ") : " << out(i, j, k) << " vs host_out"
|
||||
<< "(" << i << ", " << j << ", " << k
|
||||
<< ") : " << in1(i, j, k) * in2(i, j, k) << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("c=a*b Done\n");
|
||||
}
|
Reference in New Issue
Block a user