mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00
Move eigen to third party (#282)
* remove useless statement * Add eigen to third_party dir * remove reducdant lines
This commit is contained in:
477
third_party/eigen/bench/sparse_setter.cpp
vendored
Normal file
477
third_party/eigen/bench/sparse_setter.cpp
vendored
Normal file
@@ -0,0 +1,477 @@
|
||||
|
||||
// g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I..
|
||||
// -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 &&
|
||||
// ./a.out
|
||||
// g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I..
|
||||
// -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
|
||||
// -DNOGMM -DNOMTL -DCSPARSE
|
||||
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/
|
||||
// /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
||||
#ifndef SIZE
|
||||
#define SIZE 100000
|
||||
#endif
|
||||
|
||||
#ifndef NBPERROW
|
||||
#define NBPERROW 24
|
||||
#endif
|
||||
|
||||
#ifndef REPEAT
|
||||
#define REPEAT 2
|
||||
#endif
|
||||
|
||||
#ifndef NBTRIES
|
||||
#define NBTRIES 2
|
||||
#endif
|
||||
|
||||
#ifndef KK
|
||||
#define KK 10
|
||||
#endif
|
||||
|
||||
#ifndef NOGOOGLE
|
||||
#define EIGEN_GOOGLEHASH_SUPPORT
|
||||
#include <google/sparse_hash_map>
|
||||
#endif
|
||||
|
||||
#include "BenchSparseUtil.h"
|
||||
|
||||
#define CHECK_MEM
|
||||
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
||||
|
||||
#define BENCH(X) \
|
||||
timer.reset(); \
|
||||
for (int _j = 0; _j < NBTRIES; ++_j) { \
|
||||
timer.start(); \
|
||||
for (int _k = 0; _k < REPEAT; ++_k) { \
|
||||
X \
|
||||
} \
|
||||
timer.stop(); \
|
||||
}
|
||||
|
||||
typedef std::vector<Vector2i> Coordinates;
|
||||
typedef std::vector<float> Values;
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
int rows = SIZE;
|
||||
int cols = SIZE;
|
||||
bool fullyrand = true;
|
||||
|
||||
BenchTimer timer;
|
||||
Coordinates coords;
|
||||
Values values;
|
||||
if (fullyrand) {
|
||||
Coordinates pool;
|
||||
pool.reserve(cols * NBPERROW);
|
||||
std::cerr << "fill pool"
|
||||
<< "\n";
|
||||
for (int i = 0; i < cols * NBPERROW;) {
|
||||
// DynamicSparseMatrix<int> stencil(SIZE,SIZE);
|
||||
Vector2i ij(internal::random<int>(0, rows - 1),
|
||||
internal::random<int>(0, cols - 1));
|
||||
// if(stencil.coeffRef(ij.x(), ij.y())==0)
|
||||
{
|
||||
// stencil.coeffRef(ij.x(), ij.y()) = 1;
|
||||
pool.push_back(ij);
|
||||
}
|
||||
++i;
|
||||
}
|
||||
std::cerr << "pool ok"
|
||||
<< "\n";
|
||||
int n = cols * NBPERROW * KK;
|
||||
coords.reserve(n);
|
||||
values.reserve(n);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
int i = internal::random<int>(0, pool.size());
|
||||
coords.push_back(pool[i]);
|
||||
values.push_back(internal::random<Scalar>());
|
||||
}
|
||||
} else {
|
||||
for (int j = 0; j < cols; ++j)
|
||||
for (int i = 0; i < NBPERROW; ++i) {
|
||||
coords.push_back(Vector2i(internal::random<int>(0, rows - 1), j));
|
||||
values.push_back(internal::random<Scalar>());
|
||||
}
|
||||
}
|
||||
std::cout << "nnz = " << coords.size() << "\n";
|
||||
CHECK_MEM
|
||||
// dense matrices
|
||||
#ifdef DENSEMATRIX
|
||||
{
|
||||
BENCH(setrand_eigen_dense(coords, values);)
|
||||
std::cout << "Eigen Dense\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
// eigen sparse matrices
|
||||
// if (!fullyrand)
|
||||
// {
|
||||
// BENCH(setinnerrand_eigen(coords,values);)
|
||||
// std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
||||
// }
|
||||
{
|
||||
BENCH(setrand_eigen_dynamic(coords, values);)
|
||||
std::cout << "Eigen dynamic\t" << timer.value() << "\n";
|
||||
}
|
||||
// {
|
||||
// BENCH(setrand_eigen_compact(coords,values);)
|
||||
// std::cout << "Eigen compact\t" << timer.value() << "\n";
|
||||
// }
|
||||
{
|
||||
BENCH(setrand_eigen_sumeq(coords, values);)
|
||||
std::cout << "Eigen sumeq\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
// BENCH(setrand_eigen_gnu_hash(coords,values);)
|
||||
// std::cout << "Eigen std::map\t" << timer.value() << "\n";
|
||||
} {
|
||||
BENCH(setrand_scipy(coords, values);)
|
||||
std::cout << "scipy\t" << timer.value() << "\n";
|
||||
}
|
||||
#ifndef NOGOOGLE
|
||||
{
|
||||
BENCH(setrand_eigen_google_dense(coords, values);)
|
||||
std::cout << "Eigen google dense\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
BENCH(setrand_eigen_google_sparse(coords, values);)
|
||||
std::cout << "Eigen google sparse\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef NOUBLAS
|
||||
{
|
||||
// BENCH(setrand_ublas_mapped(coords,values);)
|
||||
// std::cout << "ublas mapped\t" << timer.value() << "\n";
|
||||
} {
|
||||
BENCH(setrand_ublas_genvec(coords, values);)
|
||||
std::cout << "ublas vecofvec\t" << timer.value() << "\n";
|
||||
}
|
||||
/*{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_ublas_compressed(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "ublas comp\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_ublas_coord(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "ublas coord\t" << timer.value() << "\n";
|
||||
}*/
|
||||
#endif
|
||||
|
||||
// MTL4
|
||||
#ifndef NOMTL
|
||||
{
|
||||
BENCH(setrand_mtl(coords, values));
|
||||
std::cout << "MTL\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
// mat.startFill(2000000/*coords.size()*/);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
mat.insert(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
mat.finalize();
|
||||
CHECK_MEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
DynamicSparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
mat.reserve(coords.size() / 10);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
mat.finalize();
|
||||
CHECK_MEM;
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
int n = coords.size() / KK;
|
||||
DynamicSparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
for (int j = 0; j < KK; ++j) {
|
||||
DynamicSparseMatrix<Scalar> aux(SIZE, SIZE);
|
||||
mat.reserve(n);
|
||||
for (int i = j * n; i < (j + 1) * n; ++i) {
|
||||
aux.insert(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
aux.finalize();
|
||||
mat += aux;
|
||||
}
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
DynamicSparseMatrix<Scalar> setter(SIZE, SIZE);
|
||||
setter.reserve(coords.size() / 10);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
SparseMatrix<Scalar> mat = setter;
|
||||
CHECK_MEM;
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
{
|
||||
RandomSetter<SparseMatrix<Scalar>, StdMapTraits> setter(mat);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
}
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
#ifndef NOGOOGLE
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
{
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
||||
for (int i = 0; i < coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
CHECK_MEM;
|
||||
}
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
{
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
||||
for (int i = 0; i < coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
CHECK_MEM;
|
||||
}
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
#endif
|
||||
|
||||
template <class T>
|
||||
void coo_tocsr(const int n_row, const int n_col, const int nnz,
|
||||
const Coordinates Aij, const Values Ax, int Bp[], int Bj[],
|
||||
T Bx[]) {
|
||||
// compute number of non-zero entries per row of A coo_tocsr
|
||||
std::fill(Bp, Bp + n_row, 0);
|
||||
|
||||
for (int n = 0; n < nnz; n++) {
|
||||
Bp[Aij[n].x()]++;
|
||||
}
|
||||
|
||||
// cumsum the nnz per row to get Bp[]
|
||||
for (int i = 0, cumsum = 0; i < n_row; i++) {
|
||||
int temp = Bp[i];
|
||||
Bp[i] = cumsum;
|
||||
cumsum += temp;
|
||||
}
|
||||
Bp[n_row] = nnz;
|
||||
|
||||
// write Aj,Ax into Bj,Bx
|
||||
for (int n = 0; n < nnz; n++) {
|
||||
int row = Aij[n].x();
|
||||
int dest = Bp[row];
|
||||
|
||||
Bj[dest] = Aij[n].y();
|
||||
Bx[dest] = Ax[n];
|
||||
|
||||
Bp[row]++;
|
||||
}
|
||||
|
||||
for (int i = 0, last = 0; i <= n_row; i++) {
|
||||
int temp = Bp[i];
|
||||
Bp[i] = last;
|
||||
last = temp;
|
||||
}
|
||||
|
||||
// now Bp,Bj,Bx form a CSR representation (with possible duplicates)
|
||||
}
|
||||
|
||||
template <class T1, class T2>
|
||||
bool kv_pair_less(const std::pair<T1, T2>& x, const std::pair<T1, T2>& y) {
|
||||
return x.first < y.first;
|
||||
}
|
||||
|
||||
template <class I, class T>
|
||||
void csr_sort_indices(const I n_row, const I Ap[], I Aj[], T Ax[]) {
|
||||
std::vector<std::pair<I, T> > temp;
|
||||
|
||||
for (I i = 0; i < n_row; i++) {
|
||||
I row_start = Ap[i];
|
||||
I row_end = Ap[i + 1];
|
||||
|
||||
temp.clear();
|
||||
|
||||
for (I jj = row_start; jj < row_end; jj++) {
|
||||
temp.push_back(std::make_pair(Aj[jj], Ax[jj]));
|
||||
}
|
||||
|
||||
std::sort(temp.begin(), temp.end(), kv_pair_less<I, T>);
|
||||
|
||||
for (I jj = row_start, n = 0; jj < row_end; jj++, n++) {
|
||||
Aj[jj] = temp[n].first;
|
||||
Ax[jj] = temp[n].second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class I, class T>
|
||||
void csr_sum_duplicates(const I n_row, const I n_col, I Ap[], I Aj[], T Ax[]) {
|
||||
I nnz = 0;
|
||||
I row_end = 0;
|
||||
for (I i = 0; i < n_row; i++) {
|
||||
I jj = row_end;
|
||||
row_end = Ap[i + 1];
|
||||
while (jj < row_end) {
|
||||
I j = Aj[jj];
|
||||
T x = Ax[jj];
|
||||
jj++;
|
||||
while (jj < row_end && Aj[jj] == j) {
|
||||
x += Ax[jj];
|
||||
jj++;
|
||||
}
|
||||
Aj[nnz] = j;
|
||||
Ax[nnz] = x;
|
||||
nnz++;
|
||||
}
|
||||
Ap[i + 1] = nnz;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
||||
mat.resizeNonZeros(coords.size());
|
||||
// std::cerr << "setrand_scipy...\n";
|
||||
coo_tocsr<Scalar>(SIZE, SIZE, coords.size(), coords, vals,
|
||||
mat._outerIndexPtr(), mat._innerIndexPtr(),
|
||||
mat._valuePtr());
|
||||
// std::cerr << "coo_tocsr ok\n";
|
||||
|
||||
csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(),
|
||||
mat._valuePtr());
|
||||
|
||||
csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(),
|
||||
mat._valuePtr());
|
||||
|
||||
mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]);
|
||||
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
#ifndef NOUBLAS
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace boost;
|
||||
using namespace boost::numeric;
|
||||
using namespace boost::numeric::ublas;
|
||||
mapped_matrix<Scalar> aux(SIZE, SIZE);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
aux(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar> mat(aux);
|
||||
return 0; // &mat(coords[0].x(), coords[0].y());
|
||||
}
|
||||
/*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const
|
||||
Values& vals)
|
||||
{
|
||||
using namespace boost;
|
||||
using namespace boost::numeric;
|
||||
using namespace boost::numeric::ublas;
|
||||
coordinate_matrix<Scalar> aux(SIZE,SIZE);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
compressed_matrix<Scalar> mat(aux);
|
||||
return 0;//&mat(coords[0].x(), coords[0].y());
|
||||
}
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords,
|
||||
const Values& vals)
|
||||
{
|
||||
using namespace boost;
|
||||
using namespace boost::numeric;
|
||||
using namespace boost::numeric::ublas;
|
||||
compressed_matrix<Scalar> mat(SIZE,SIZE);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
mat(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
return 0;//&mat(coords[0].x(), coords[0].y());
|
||||
}*/
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords,
|
||||
const Values& vals) {
|
||||
using namespace boost;
|
||||
using namespace boost::numeric;
|
||||
using namespace boost::numeric::ublas;
|
||||
|
||||
// ublas::vector<coordinate_vector<Scalar> > foo;
|
||||
generalized_vector_of_vector<Scalar, row_major,
|
||||
ublas::vector<coordinate_vector<Scalar> > >
|
||||
aux(SIZE, SIZE);
|
||||
for (int i = 0; i < coords.size(); ++i) {
|
||||
aux(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar, row_major> mat(aux);
|
||||
return 0; //&mat(coords[0].x(), coords[0].y());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef NOMTL
|
||||
EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords,
|
||||
const Values& vals);
|
||||
#endif
|
Reference in New Issue
Block a user