[Backend] add sophgo backend (#1015)

* Add Sophgo Device

add sophgo backend in fastdeploy

add resnet50, yolov5s, liteseg examples.

* replace sophgo lib with download links; fix model.cc bug

* modify CodeStyle

* remove unuseful files;change the names of sophgo device and sophgo
backend

* sophgo support python and add python examples

* remove unuseful rows in cmake according pr

Co-authored-by: Zilong Xing <zilong.xing@sophgo.com>
This commit is contained in:
Dantès
2023-01-04 15:49:17 +08:00
committed by GitHub
parent 0c292c0766
commit 34bea7649d
41 changed files with 1583 additions and 9 deletions

View File

@@ -0,0 +1,75 @@
# YOLOv5 SOPHGO部署示例
## 支持模型列表
YOLOv5 v6.0部署模型实现来自[YOLOv5](https://github.com/ultralytics/yolov5/tree/v6.0),和[基于COCO的预训练模型](https://github.com/ultralytics/yolov5/releases/tag/v6.0)
## 准备YOLOv5部署模型以及转换模型
SOPHGO-TPU部署模型前需要将Paddle模型转换成bmodel模型具体步骤如下:
- 下载预训练ONNX模型请参考[YOLOv5准备部署模型](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples/vision/detection/yolov5)
- ONNX模型转换bmodel模型的过程请参考[TPU-MLIR](https://github.com/sophgo/tpu-mlir)
## 模型转换example
下面以YOLOv5s为例子,教大家如何转换ONNX模型到SOPHGO-TPU模型
## 下载YOLOv5s模型
### 下载ONNX YOLOv5s静态图模型
```shell
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
```
### 导出bmodel模型
以转化BM1684x的bmodel模型为例子我们需要下载[TPU-MLIR](https://github.com/sophgo/tpu-mlir)工程,安装过程具体参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
### 1. 安装
``` shell
docker pull sophgo/tpuc_dev:latest
# myname1234是一个示例也可以设置其他名字
docker run --privileged --name myname1234 -v $PWD:/workspace -it sophgo/tpuc_dev:latest
source ./envsetup.sh
./build.sh
```
### 2. ONNX模型转换为bmodel模型
``` shell
mkdir YOLOv5s && cd YOLOv5s
# 在该文件中放入测试图片同时将上一步下载的yolov5s.onnx放入该文件夹中
cp -rf ${REGRESSION_PATH}/dataset/COCO2017 .
cp -rf ${REGRESSION_PATH}/image .
# 放入onnx模型文件yolov5s.onnx
mkdir workspace && cd workspace
# 将ONNX模型转换为mlir模型其中参数--output_names可以通过NETRON查看
model_transform.py \
--model_name yolov5s \
--model_def ../yolov5s.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names output,350,498,646 \
--test_input ../image/dog.jpg \
--test_result yolov5s_top_outputs.npz \
--mlir yolov5s.mlir
# 将mlir模型转换为BM1684x的F32 bmodel模型
model_deploy.py \
--mlir yolov5s.mlir \
--quantize F32 \
--chip bm1684x \
--test_input yolov5s_in_f32.npz \
--test_reference yolov5s_top_outputs.npz \
--model yolov5s_1684x_f32.bmodel
```
最终获得可以在BM1684x上能够运行的bmodel模型yolov5s_1684x_f32.bmodel。如果需要进一步对模型进行加速可以将ONNX模型转换为INT8 bmodel具体步骤参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
## 其他链接
- [Cpp部署](./cpp)

View File

@@ -0,0 +1,17 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
set(ENABLE_LITE_BACKEND OFF)
#set(FDLIB ${FASTDEPLOY_INSTALL_DIR})
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,56 @@
# YOLOv5 C++部署示例
本目录下提供`infer.cc`快速完成yolov5s模型在SOPHGO BM1684x板子上加速部署的示例。
在部署前,需确认以下两个步骤:
1. 软硬件环境满足要求
2. 根据开发环境从头编译FastDeploy仓库
以上步骤请参考[SOPHGO部署库编译](../../../../../../docs/cn/build_and_install/sophgo.md)实现
## 生成基本目录文件
该例程由以下几个部分组成
```text
.
├── CMakeLists.txt
├── build # 编译文件夹
├── image # 存放图片的文件夹
├── infer.cc
└── model # 存放模型文件的文件夹
```
## 编译
### 编译并拷贝SDK到thirdpartys文件夹
请参考[SOPHGO部署库编译](../../../../../../docs/cn/build_and_install/sophgo.md)仓库编译SDK编译完成后将在build目录下生成fastdeploy-0.0.3目录.
### 拷贝模型文件以及配置文件至model文件夹
将Paddle模型转换为SOPHGO bmodel模型转换步骤参考[文档](../README.md)
将转换后的SOPHGO bmodel模型文件拷贝至model中
### 准备测试图片至image文件夹
```bash
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
cp 000000014439.jpg ./images
```
### 编译example
```bash
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-0.0.3
make
```
## 运行例程
```bash
./infer_demo model images/000000014439.jpg
```
- [模型介绍](../../)
- [模型转换](../)

View File

@@ -0,0 +1,61 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "yolov5s_1684x_f32.bmodel";
auto params_file = model_dir + sep + "";
fastdeploy::RuntimeOption option;
option.UseSophgo();
auto model_format = fastdeploy::ModelFormat::SOPHGO;
auto model = fastdeploy::vision::detection::YOLOv5(
model_file, params_file, option, model_format);
assert(model.Initialized());
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout << "Usage: infer_demo path/to/model "
"path/to/image "
"run_option, "
"e.g ./infer_demo ./model ./test.jpeg"
<< std::endl;
return -1;
}
std::string model_dir = argv[1];
std::string test_image = argv[2];
InitAndInfer(model_dir, test_image);
return 0;
}

View File

@@ -0,0 +1,46 @@
# YOLOv5 Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/sophgo.md)
本目录下提供`infer.py`快速完成 YOLOv5 在SOPHGO TPU上部署的示例。执行如下脚本即可完成
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/yolov5/sophgo/python
# 下载图片
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 推理
python3 infer.py --model_file ./bmodel/yolov5s_1684x_f32.bmodel --image 000000014439.jpg
# 运行完成后返回结果如下所示
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
268.480255,81.053055, 298.694794, 169.439026, 0.896569, 0
104.731163,45.661972, 127.583824, 93.449387, 0.869531, 0
378.909363,39.750137, 395.608643, 84.243454, 0.868430, 0
158.552979,80.361511, 199.185760, 168.181915, 0.842988, 0
414.375305,90.948090, 506.321899, 280.405182, 0.835842, 0
364.003448,56.608932, 381.978607, 115.968216, 0.815136, 0
351.725128,42.635330, 366.910309, 98.048386, 0.808936, 0
505.888306,114.366791, 593.124878, 275.995270, 0.801361, 0
327.708618,38.363693, 346.849915, 80.893021, 0.794725, 0
583.493408,114.532883, 612.354614, 175.873535, 0.760649, 0
186.470657,44.941360, 199.664505, 61.037643, 0.632591, 0
169.615891,48.014603, 178.141556, 60.888596, 0.613938, 0
25.810200,117.199692, 59.888783, 152.850128, 0.590614, 0
352.145294,46.712723, 381.946075, 106.752151, 0.505329, 0
1.875000,150.734375, 37.968750, 173.781250, 0.404573, 24
464.657288,15.901413, 472.512939, 34.116409, 0.346033, 0
64.625000,135.171875, 84.500000, 154.406250, 0.332831, 24
57.812500,151.234375, 103.000000, 174.156250, 0.332566, 24
165.906250,88.609375, 527.906250, 339.953125, 0.259424, 33
101.406250,152.562500, 118.890625, 169.140625, 0.253891, 24
```
## 其它文档
- [YOLOv5 C++部署](../cpp)
- [转换YOLOv5 SOPHGO模型文档](../README.md)

View File

@@ -0,0 +1,40 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, help="Path of model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
args = parse_arguments()
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model_file = args.model
params_file = ""
model = fd.vision.detection.YOLOv5(
model_file,
params_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
# 预测图片分类结果
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result)
cv2.imwrite("sophgo_result.jpg", vis_im)
print("Visualized result save in ./sophgo_result.jpg")