[feature] Support FA2 (#3009)

This commit is contained in:
chen
2025-07-25 14:09:00 +08:00
committed by GitHub
parent 4b02b96467
commit 332154f504

View File

@@ -20,6 +20,7 @@ from dataclasses import dataclass, field
from typing import TYPE_CHECKING, List, Optional
import paddle
from paddle.nn.functional.flash_attention import flash_attn_unpadded
try:
from paddle.nn.functional.flash_attention import flash_attention_v3_varlen
@@ -91,6 +92,7 @@ class FlashAttentionBackend(AttentionBackend):
__infer_dynamic_dims_fields__ = ["attention_metadata"]
attention_metadata: FlashAttentionMetadata
flash_attn_func: callable = None
def __init__(
self,
@@ -110,7 +112,7 @@ class FlashAttentionBackend(AttentionBackend):
self.kv_num_heads = kv_num_heads
self.num_heads = num_heads
self.head_dim = fd_config.model_config.head_dim
self.hidden_size = self.num_heads * self.head_dim
self.attn_outputsize_tp = self.num_heads * self.head_dim
self.block_size = fd_config.parallel_config.block_size
self.num_layers: int = fd_config.model_config.num_hidden_layers
@@ -129,6 +131,22 @@ class FlashAttentionBackend(AttentionBackend):
self.rank, self.device_id = init_rank_and_device_id(fd_config)
if self.flash_attn_func is None:
prop = paddle.device.cuda.get_device_properties()
cc = prop.major * 10 + prop.minor
is_current_sm_supported = cc >= 90
is_paddle_supported = any(num >= 90 for num in paddle.version.cuda_archs())
if is_current_sm_supported and is_paddle_supported:
self.flash_attn_func = flash_attention_v3_varlen
print("The current platform supports Flash Attention V3.")
self.flash_attn_kwargs = {}
else:
self.flash_attn_func = flash_attn_unpadded
self.flash_attn_kwargs = {"scale": self.head_dim**-0.5, "training": False}
print(
"The current platform does not support Flash Attention V3, so Flash Attention V2 will be used instead."
)
def get_attntion_meta(self):
"""get_attntion_meta"""
return self.attention_metadata
@@ -266,7 +284,8 @@ class FlashAttentionBackend(AttentionBackend):
self.max_seq_len,
getattr(layer, "cache_quant_type_str", "none"),
)
res = flash_attention_v3_varlen(
res = self.flash_attn_func(
q,
k,
v,
@@ -275,5 +294,6 @@ class FlashAttentionBackend(AttentionBackend):
max_seqlen_q=metadata.set_max_lengths[0],
max_seqlen_k=metadata.set_max_lengths[3],
causal=self.causal,
)[0].reshape([-1, self.hidden_size])
**self.flash_attn_kwargs,
)[0].reshape([-1, self.attn_outputsize_tp])
return res