mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
[Doc] Update RKYOLO Docs (#1330)
* 更新docs * 修正docs错误 * 更新docs * 更新python example脚本和ppyoloe转换脚本 * 更新PaddleDetection文档 * 更新文档 * 更新文档 * 更新文档 * 更新文档 * 更新文档 * 更新RKYOLO系列模型文档 * 更新PaddleDetection python example
This commit is contained in:
@@ -50,7 +50,7 @@ paddle2onnx --model_dir picodet_s_416_coco_lcnet \
|
||||
# 固定shape
|
||||
python -m paddle2onnx.optimize --input_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--output_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--input_shape_dict "{'image':[1,3,416,416]}"
|
||||
--input_shape_dict "{'image':[1,3,416,416], 'scale_factor':[1,2]}"
|
||||
```
|
||||
|
||||
### 编写yaml文件
|
||||
@@ -73,11 +73,12 @@ std:
|
||||
```
|
||||
|
||||
**修改outputs参数**
|
||||
|
||||
由于Paddle2ONNX版本的不同,转换模型的输出节点名称也有所不同,请使用[Netron](https://netron.app)对模型进行可视化,并找到以下蓝色方框标记的NonMaxSuppression节点,红色方框的节点名称即为目标名称。
|
||||
|
||||
例如,使用Netron可视化后,得到以下图片:
|
||||
|
||||

|
||||

|
||||
|
||||
找到蓝色方框标记的NonMaxSuppression节点,可以看到红色方框标记的两个节点名称为p2o.Div.79和p2o.Concat.9,因此需要修改outputs参数,修改后如下:
|
||||
|
||||
@@ -96,6 +97,16 @@ python tools/rknpu2/export.py --config_path tools/rknpu2/config/picodet_s_416_co
|
||||
--target_platform rk3588
|
||||
```
|
||||
|
||||
## RKNN模型列表
|
||||
|
||||
为了方便大家测试,我们提供picodet和ppyoloe两个模型,解压后即可使用:
|
||||
|
||||
| 模型名称 | 下载地址 |
|
||||
|-----------------------------|-----------------------------------------------------------------------------------|
|
||||
| picodet_s_416_coco_lcnet | https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/picodet_s_416_coco_lcnet.zip |
|
||||
| ppyoloe_plus_crn_s_80e_coco | https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/ppyoloe_plus_crn_s_80e_coco.zip |
|
||||
|
||||
|
||||
|
||||
## 其他链接
|
||||
|
||||
|
@@ -14,3 +14,6 @@ target_link_libraries(infer_picodet_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_yolov8_demo ${PROJECT_SOURCE_DIR}/infer_yolov8_demo.cc)
|
||||
target_link_libraries(infer_yolov8_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_ppyoloe_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloe_demo.cc)
|
||||
target_link_libraries(infer_ppyoloe_demo ${FASTDEPLOY_LIBS})
|
||||
|
@@ -12,7 +12,7 @@
|
||||
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
|
||||
|
||||
```bash
|
||||
以picodet为例进行推理部署
|
||||
# 以picodet为例进行推理部署
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
@@ -23,6 +23,8 @@ cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载PPYOLOE模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/picodet_s_416_coco_lcnet.zip
|
||||
unzip picodet_s_416_coco_lcnet.zip
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# CPU推理
|
||||
@@ -31,13 +33,6 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
./infer_picodet_demo ./picodet_s_416_coco_lcnet 000000014439.jpg 1
|
||||
```
|
||||
|
||||
## 运行例程
|
||||
|
||||
```bash
|
||||
cd ./build/install
|
||||
./infer_picodet model/picodet_s_416_coco_lcnet images/000000014439.jpg
|
||||
```
|
||||
|
||||
## 文档导航
|
||||
|
||||
- [模型介绍](../../)
|
||||
|
@@ -0,0 +1,95 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::string model_file = model_dir + "/yolov8_n_500e_coco.onnx";
|
||||
std::string params_file;
|
||||
std::string config_file = model_dir + "/infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto format = fastdeploy::ModelFormat::ONNX;
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option, format);
|
||||
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
auto im = cv::imread(image_file);
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
tc.End();
|
||||
tc.PrintInfo("PPDet in ONNX");
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
cv::imwrite("infer_onnx.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + "/ppyoloe_plus_crn_s_80e_coco_rk3588_quantized.rknn";
|
||||
auto params_file = "";
|
||||
auto config_file = model_dir + "/infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseRKNPU2();
|
||||
|
||||
auto format = fastdeploy::ModelFormat::RKNN;
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option, format);
|
||||
|
||||
model.GetPreprocessor().DisablePermute();
|
||||
model.GetPreprocessor().DisableNormalize();
|
||||
model.GetPostprocessor().ApplyDecodeAndNMS();
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
tc.End();
|
||||
tc.PrintInfo("PPDet in RKNPU2");
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("infer_rknpu2.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./infer_rknpu2.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
ONNXInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -22,11 +22,11 @@ def parse_arguments():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_file",
|
||||
default="./picodet_s_416_coco_lcnet_non_postprocess/picodet_xs_416_coco_lcnet.onnx",
|
||||
default="./picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet_rk3588_unquantized.rknn",
|
||||
help="Path of rknn model.")
|
||||
parser.add_argument(
|
||||
"--config_file",
|
||||
default="./picodet_s_416_coco_lcnet_non_postprocess/infer_cfg.yml",
|
||||
default="./picodet_s_416_coco_lcnet/infer_cfg.yml",
|
||||
help="Path of config.")
|
||||
parser.add_argument(
|
||||
"--image",
|
||||
|
@@ -6,11 +6,21 @@ RKYOLO参考[rknn_model_zoo](https://github.com/airockchip/rknn_model_zoo/tree/m
|
||||
|
||||
## 支持模型列表
|
||||
|
||||
FastDeploy目前支持以下三个模型的部署:
|
||||
|
||||
* RKYOLOV5
|
||||
* RKYOLOX
|
||||
* RKYOLOv7
|
||||
|
||||
## 模型转换example
|
||||
为了方便大家测试,我们提供了三个转换过后的模型,大家可以直接下载使用。
|
||||
如果你有转换模型的需求,请参考[RKNN_model_convert](https://github.com/airockchip/rknn_model_zoo/tree/main/models/CV/object_detection/yolo/RKNN_model_convert)
|
||||
|
||||
| 模型名称 | 下载地址 |
|
||||
|--------------------|---------------------------------------------------------------------|
|
||||
| yolov5-s-relu-int8 | https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolov5-s-relu.zip |
|
||||
| yolov7-tiny-int8 | https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolov7-tiny.zip |
|
||||
| yolox-s-int8 | https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolox-s.zip |
|
||||
|
||||
请参考[RKNN_model_convert](https://github.com/airockchip/rknn_model_zoo/tree/main/models/CV/object_detection/yolo/RKNN_model_convert)
|
||||
|
||||
|
||||
## 其他链接
|
||||
|
Reference in New Issue
Block a user