mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	Update evaluation function to support calculate average inference time (#106)
* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
		| @@ -2,25 +2,53 @@ | ||||
|  | ||||
| ## 模型版本说明 | ||||
|  | ||||
| - [PaddleClas Release/2.4](https://github.com/PaddlePaddle/PaddleClas) | ||||
| - [PaddleClas Release/2.4](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.4) | ||||
|  | ||||
| 目前FastDeploy支持如下模型的部署 | ||||
|  | ||||
| - [PP-LCNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-LCNet.md) | ||||
| - [PP-LCNetV2系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-LCNetV2.md) | ||||
| - [EfficientNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md) | ||||
| - [GhostNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md) | ||||
| - [MobileNet系列模型(包含v1,v2,v3)](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md) | ||||
| - [ShuffleNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Mobile.md) | ||||
| - [SqueezeNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Others.md) | ||||
| - [Inception系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/Inception.md) | ||||
| - [PP-HGNet系列模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-HGNet.md) | ||||
| - [ResNet系列模型(包含vd系列)](https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ResNet_and_vd.md) | ||||
|  | ||||
| ## 准备PaddleClas部署模型 | ||||
|  | ||||
| PaddleClas模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)   | ||||
|  | ||||
| 注意:PaddleClas导出的模型仅包含`inference.pdmodel`和`inference.pdiparams`两个文档,但为了满足部署的需求,同时也需准备其提供的[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/deploy/configs/inference_cls.yaml)文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息,开发者可直接下载此文件使用。但需根据自己的需求修改yaml文件中的配置参数。 | ||||
| 注意:PaddleClas导出的模型仅包含`inference.pdmodel`和`inference.pdiparams`两个文档,但为了满足部署的需求,同时也需准备其提供的通用[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/deploy/configs/inference_cls.yaml)文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息,开发者可直接下载此文件使用。但需根据自己的需求修改yaml文件中的配置参数,具体可比照PaddleClas模型训练[config](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.4/ppcls/configs/ImageNet)中的infer部分的配置信息进行修改。 | ||||
|  | ||||
|  | ||||
| ## 下载预训练模型 | ||||
|  | ||||
| 为了方便开发者的测试,下面提供了PaddleClas导出的部分模型(含inference_cls.yaml文件),开发者可直接下载使用。 | ||||
|  | ||||
| | 模型                                                               | 大小    |输入Shape |  精度    | | ||||
| |:---------------------------------------------------------------- |:----- |:----- | :----- | | ||||
| | [PPLCNet]() | 141MB | 224x224 |51.4% | | ||||
| | [PPLCNetv2]()  | 10MB  | 224x224 |51.4% | | ||||
| | [EfficientNet]() |     | 224x224 |     | | ||||
|  | ||||
| | 模型                                                               | 参数文件大小    |输入Shape |  Top1 | Top5 | | ||||
| |:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | | ||||
| | [PPLCNet_x1_0](https://bj.bcebos.com/paddlehub/fastdeploy/PPLCNet_x1_0_infer.tgz) | 12MB | 224x224 |71.32% | 90.03% | | ||||
| | [PPLCNetV2_base](https://bj.bcebos.com/paddlehub/fastdeploy/PPLCNetV2_base_infer.tgz)  | 26MB  | 224x224 |77.04% | 93.27% | | ||||
| | [EfficientNetB7](https://bj.bcebos.com/paddlehub/fastdeploy/EfficientNetB7_infer.tgz) |  255MB | 600x600 | 84.3% | 96.9% | | ||||
| | [EfficientNetB0_small](https://bj.bcebos.com/paddlehub/fastdeploy/EfficientNetB0_small_infer.tgz)|  18MB | 224x224 | 75.8% | 75.8% | | ||||
| | [GhostNet_x1_3_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/GhostNet_x1_3_ssld_infer.tgz) |  29MB | 224x224 | 75.7% | 92.5% | | ||||
| | [GhostNet_x0_5_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/GhostNet_x0_5_infer.tgz) |  10MB | 224x224 | 66.8% | 86.9% | | ||||
| | [MobileNetV1_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_x0_25_infer.tgz) |  1.9MB | 224x224 | 51.4% | 75.5% | | ||||
| | [MobileNetV1_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_ssld_infer.tgz) |  17MB | 224x224 | 77.9% | 93.9% | | ||||
| | [MobileNetV2_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV2_x0_25_infer.tgz) |  5.9MB | 224x224 | 53.2% | 76.5% | | ||||
| | [MobileNetV2_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV2_ssld_infer.tgz) |  14MB | 224x224 | 76.74% | 93.39% | | ||||
| | [MobileNetV3_small_x0_35_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV3_small_x0_35_ssld_infer.tgz) |  6.4MB | 224x224 | 55.55% | 77.71% | | ||||
| | [MobileNetV3_large_x1_0_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV3_large_x1_0_ssld_infer.tgz) |  22MB | 224x224 | 78.96% | 94.48% | | ||||
| | [ShuffleNetV2_x0_25](https://bj.bcebos.com/paddlehub/fastdeploy/ShuffleNetV2_x0_25_infer.tgz) |  2.4MB | 224x224 | 49.9% | 73.79% | | ||||
| | [ShuffleNetV2_x2_0](https://bj.bcebos.com/paddlehub/fastdeploy/ShuffleNetV2_x2_0_infer.tgz) |  29MB | 224x224 | 73.15% | 91.2% | | ||||
| | [SqueezeNet1_1](https://bj.bcebos.com/paddlehub/fastdeploy/SqueezeNet1_1_infer.tgz) |  4.8MB | 224x224 | 60.1% | 81.9% | | ||||
| | [InceptionV3](https://bj.bcebos.com/paddlehub/fastdeploy/InceptionV3_infer.tgz) |  92MB | 299x299 | 79.14% | 94.59% | | ||||
| | [PPHGNet_tiny_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/PPHGNet_tiny_ssld_infer.tgz) |  57MB | 224x224 | 81.95% | 96.12% | | ||||
| | [PPHGNet_base_ssld](https://bj.bcebos.com/paddlehub/fastdeploy/PPHGNet_base_ssld_infer.tgz) |  274MB | 224x224 | 85.0% | 97.35% | | ||||
| | [ResNet50_vd](https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz) |  98MB | 224x224 | 79.12% | 94.44% | | ||||
|  | ||||
| ## 详细部署文档 | ||||
|  | ||||
|   | ||||
| @@ -5,67 +5,71 @@ | ||||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)   | ||||
| - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start/install.md) | ||||
|  | ||||
| 本目录下提供`infer.py`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成 | ||||
| 本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成 | ||||
|  | ||||
| ``` | ||||
| # 下载yolov7模型文件和测试图片 | ||||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx | ||||
| wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg | ||||
| # 下载ResNet50_vd模型文件和测试图片 | ||||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz | ||||
| tar -xvf ResNet50_vd_infer.tgz | ||||
| wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg | ||||
|  | ||||
|  | ||||
| #下载部署示例代码 | ||||
| git clone https://github.com/PaddlePaddle/FastDeploy.git | ||||
| cd examples/vison/detection/yolov7/python/ | ||||
| cd examples/vision/classification/paddleclas/python | ||||
|  | ||||
| # CPU推理 | ||||
| python infer.py --model yolov7.onnx --image 000000087038.jpg --device cpu | ||||
| python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu | ||||
| # GPU推理 | ||||
| python infer.py --model yolov7.onnx --image 000000087038.jpg --device gpu | ||||
| python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu | ||||
| # GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待) | ||||
| python infer.py --model yolov7.onnx --image 000000087038.jpg --device gpu --use_trt True | ||||
| python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True | ||||
| ``` | ||||
|  | ||||
| 运行完成可视化结果如下图所示 | ||||
|  | ||||
| ## YOLOv7 Python接口 | ||||
|  | ||||
| 运行完成后返回结果如下所示 | ||||
| ``` | ||||
| fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX) | ||||
| ClassifyResult( | ||||
| label_ids: 153, | ||||
| scores: 0.686229, | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式 | ||||
| ## PaddleClasModel Python接口 | ||||
|  | ||||
| ``` | ||||
| fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE) | ||||
| ``` | ||||
|  | ||||
| PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA) | ||||
|  | ||||
| **参数** | ||||
|  | ||||
| > * **model_file**(str): 模型文件路径 | ||||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定 | ||||
| > * **params_file**(str): 参数文件路径 | ||||
| > * **config_file**(str): 推理部署配置文件 | ||||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 | ||||
| > * **model_format**(Frontend): 模型格式,默认为ONNX | ||||
| > * **model_format**(Frontend): 模型格式,默认为Paddle格式 | ||||
|  | ||||
| ### predict函数 | ||||
|  | ||||
| > ``` | ||||
| > YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) | ||||
| > PaddleClasModel.predict(input_image, topk=1) | ||||
| > ``` | ||||
| >  | ||||
| > 模型预测结口,输入图像直接输出检测结果。 | ||||
| >  | ||||
| > **参数** | ||||
| >  | ||||
| > > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式 | ||||
| > > * **conf_threshold**(float): 检测框置信度过滤阈值 | ||||
| > > * **nms_iou_threshold**(float): NMS处理过程中iou阈值 | ||||
| > > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式 | ||||
| > > * **topk**(int):返回预测概率最高的topk个分类结果 | ||||
|  | ||||
| > **返回** | ||||
| >  | ||||
| > > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/) | ||||
| > > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/) | ||||
|  | ||||
| ### 类成员属性 | ||||
|  | ||||
| > > * **size**(list | tuple): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640] | ||||
|  | ||||
| ## 其它文档 | ||||
|  | ||||
| - [YOLOv7 模型介绍](..) | ||||
| - [YOLOv7 C++部署](../cpp) | ||||
| - [PaddleClas 模型介绍](..) | ||||
| - [PaddleClas C++部署](../cpp) | ||||
| - [模型预测结果说明](../../../../../docs/api/vision_results/) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 huangjianhui
					huangjianhui