mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
@@ -13,12 +13,14 @@
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import traceback
|
||||
import warnings
|
||||
from multiprocessing import Process, Queue
|
||||
|
||||
import pytest
|
||||
|
||||
os.environ["LOAD_STATE_DICT_THREAD_NUM"] = "1"
|
||||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
|
||||
MAX_WAIT_SECONDS = 60 * 5
|
||||
|
||||
@@ -46,6 +48,33 @@ def get_model_paths(base_model_name: str) -> tuple[str, str]:
|
||||
return fd_model_path, torch_model_path
|
||||
|
||||
|
||||
def clear_logs():
|
||||
log_path = os.path.join(os.getcwd(), "log")
|
||||
if os.path.exists(log_path):
|
||||
try:
|
||||
shutil.rmtree(log_path)
|
||||
print(f"Deleted log directory: {log_path}")
|
||||
except Exception as e:
|
||||
print(f"Failed to delete log directory {log_path}: {e}")
|
||||
else:
|
||||
print(f"No log directory found at {log_path}")
|
||||
|
||||
|
||||
def print_logs():
|
||||
log_dir = os.path.join(os.getcwd(), "log")
|
||||
log_file = os.path.join(log_dir, "workerlog.0")
|
||||
|
||||
if not os.path.exists(log_file):
|
||||
print(f"Log file {log_file} does not exist.")
|
||||
return
|
||||
|
||||
print(f"\n===== {log_file} start =====")
|
||||
with open(log_file, "r") as f:
|
||||
for line in f:
|
||||
print(line, end="")
|
||||
print(f"\n===== {log_file} end =====\n")
|
||||
|
||||
|
||||
def check_tokens_id_and_text_close(
|
||||
*,
|
||||
outputs_0_lst: TokensIdText,
|
||||
@@ -110,37 +139,72 @@ def form_model_get_output(
|
||||
pytest.fail(f"Failed to initialize LLM model from {model_path}")
|
||||
|
||||
|
||||
def run_with_timeout(target, args, timeout=60 * 5):
|
||||
clear_logs()
|
||||
result_queue = Queue()
|
||||
p = Process(target=target, args=(*args, result_queue))
|
||||
p.start()
|
||||
p.join(timeout)
|
||||
if p.is_alive():
|
||||
p.terminate()
|
||||
print_logs()
|
||||
raise RuntimeError("Worker process hung and was terminated")
|
||||
try:
|
||||
return result_queue.get(timeout=60)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to get result from worker: {e}")
|
||||
|
||||
|
||||
model_param_map = {
|
||||
"Qwen3-0.6B": {
|
||||
"quantizations": ["None", "wint4", "wint8"],
|
||||
},
|
||||
"ernie-4_5-21b-a3b-bf16-paddle": {
|
||||
"tensor_parallel_size": 2,
|
||||
"quantizations": ["wint8"],
|
||||
"quantizations": [
|
||||
"wint8",
|
||||
],
|
||||
},
|
||||
"Qwen2-7B-Instruct": {
|
||||
"quantizations": ["None", "wint8"],
|
||||
},
|
||||
"Qwen3-30B-A3B": {
|
||||
"tensor_parallel_size": 2,
|
||||
"quantizations": [
|
||||
{
|
||||
"quant_type": "block_wise_fp8",
|
||||
"backend": "triton",
|
||||
"env": {"FD_USE_DEEP_GEMM": "0", "DG_NVCC_OVERRIDE_CPP_STANDARD": "17"},
|
||||
},
|
||||
{"quant_type": "block_wise_fp8", "backend": "deepgemm", "env": {"DG_NVCC_OVERRIDE_CPP_STANDARD": "17"}},
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
params = []
|
||||
for model, cfg in model_param_map.items():
|
||||
for q in cfg["quantizations"]:
|
||||
if isinstance(q, dict):
|
||||
quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {})
|
||||
else:
|
||||
quant, backend, env = q, "default", {}
|
||||
params.append(
|
||||
pytest.param(
|
||||
model,
|
||||
cfg.get("tensor_parallel_size", 1),
|
||||
cfg.get("max_model_len", 1024),
|
||||
q,
|
||||
quant,
|
||||
cfg.get("max_tokens", 32),
|
||||
env,
|
||||
marks=[pytest.mark.core_model],
|
||||
id=f"{model}.{quant}.{backend}",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
|
||||
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env",
|
||||
params,
|
||||
)
|
||||
def test_common_model(
|
||||
@@ -150,46 +214,26 @@ def test_common_model(
|
||||
max_model_len: int,
|
||||
max_tokens: int,
|
||||
quantization: str,
|
||||
env,
|
||||
monkeypatch,
|
||||
) -> None:
|
||||
base_path = os.getenv("MODEL_PATH")
|
||||
if base_path:
|
||||
model_path = os.path.join(base_path, model_name_or_path)
|
||||
else:
|
||||
model_path = model_name_or_path
|
||||
result_queue = Queue()
|
||||
p = Process(
|
||||
target=form_model_get_output,
|
||||
args=(
|
||||
fd_runner,
|
||||
model_path,
|
||||
tensor_parallel_size,
|
||||
max_model_len,
|
||||
max_tokens,
|
||||
quantization,
|
||||
"default",
|
||||
result_queue,
|
||||
),
|
||||
)
|
||||
p.start()
|
||||
p.join()
|
||||
fd_outputs_v0 = result_queue.get(timeout=60)
|
||||
if env:
|
||||
for k, v in env.items():
|
||||
monkeypatch.setenv(k, v)
|
||||
|
||||
p = Process(
|
||||
fd_outputs_v0 = run_with_timeout(
|
||||
target=form_model_get_output,
|
||||
args=(
|
||||
fd_runner,
|
||||
model_path,
|
||||
tensor_parallel_size,
|
||||
max_model_len,
|
||||
max_tokens,
|
||||
quantization,
|
||||
"default_v1",
|
||||
result_queue,
|
||||
),
|
||||
args=(fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default"),
|
||||
)
|
||||
fd_outputs_v1 = run_with_timeout(
|
||||
target=form_model_get_output,
|
||||
args=(fd_runner, model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default_v1"),
|
||||
)
|
||||
p.start()
|
||||
p.join()
|
||||
fd_outputs_v1 = result_queue.get(timeout=60)
|
||||
check_tokens_id_and_text_close(
|
||||
outputs_0_lst=fd_outputs_v0,
|
||||
outputs_1_lst=fd_outputs_v1,
|
||||
@@ -235,26 +279,12 @@ def test_paddle_vs_torch_model(
|
||||
|
||||
fd_model_path, torch_model_path = get_model_paths(model_name_or_path)
|
||||
|
||||
result_queue = Queue()
|
||||
|
||||
p_paddle = Process(
|
||||
paddle_outputs = run_with_timeout(
|
||||
target=form_model_get_output,
|
||||
args=(
|
||||
fd_runner,
|
||||
fd_model_path,
|
||||
tensor_parallel_size,
|
||||
max_model_len,
|
||||
max_tokens,
|
||||
quantization,
|
||||
"default",
|
||||
result_queue,
|
||||
),
|
||||
args=(fd_runner, fd_model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default"),
|
||||
)
|
||||
p_paddle.start()
|
||||
p_paddle.join()
|
||||
paddle_outputs = result_queue.get(timeout=60)
|
||||
|
||||
p_hf = Process(
|
||||
hf_outputs = run_with_timeout(
|
||||
target=form_model_get_output,
|
||||
args=(
|
||||
fd_runner,
|
||||
@@ -264,12 +294,8 @@ def test_paddle_vs_torch_model(
|
||||
max_tokens,
|
||||
quantization,
|
||||
"default_v1",
|
||||
result_queue,
|
||||
),
|
||||
)
|
||||
p_hf.start()
|
||||
p_hf.join()
|
||||
hf_outputs = result_queue.get(timeout=60)
|
||||
|
||||
check_tokens_id_and_text_close(
|
||||
outputs_0_lst=paddle_outputs,
|
||||
|
Reference in New Issue
Block a user