mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
@@ -20,7 +20,12 @@ import paddle
|
||||
|
||||
import fastdeploy
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.layers.linear import (
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
)
|
||||
from fastdeploy.model_executor.layers.moe import FusedMoE
|
||||
from fastdeploy.model_executor.utils import TensorTracker, set_weight_attrs
|
||||
|
||||
from ..utils import get_tensor, per_block_cast_to_fp8
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
@@ -33,13 +38,14 @@ class BlockWiseFP8Config(QuantConfigBase):
|
||||
per-token quantization of activations during inference.
|
||||
"""
|
||||
|
||||
def __init__(self, weight_block_size: list = [-1, -1]) -> None:
|
||||
def __init__(self, weight_block_size: list = [-1, -1], is_checkpoint_bf16: bool = False) -> None:
|
||||
super().__init__()
|
||||
self.weight_block_size = weight_block_size
|
||||
self.quant_max_bound = 448
|
||||
self.quant_min_bound = -448
|
||||
self.quant_round_type = 1
|
||||
self.use_deep_gemm = bool(envs.FD_USE_DEEP_GEMM)
|
||||
self.is_checkpoint_bf16 = is_checkpoint_bf16
|
||||
|
||||
def name(self) -> str:
|
||||
return "block_wise_fp8"
|
||||
@@ -47,7 +53,8 @@ class BlockWiseFP8Config(QuantConfigBase):
|
||||
@classmethod
|
||||
def from_config(cls, config: dict) -> "BlockWiseFP8Config":
|
||||
weight_block_size = config.get("weight_block_size", [128, 128])
|
||||
return cls(weight_block_size)
|
||||
is_checkpoint_bf16 = config.get("is_checkpoint_bf16", False)
|
||||
return cls(weight_block_size, is_checkpoint_bf16)
|
||||
|
||||
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
||||
"""
|
||||
@@ -82,31 +89,78 @@ class BlockWiseFP8LinearMethod(QuantMethodBase):
|
||||
self.quant_config = quant_config
|
||||
|
||||
def create_weights(self, layer, **extra_weight_attrs):
|
||||
layer.weight_shape.reverse()
|
||||
layer.weight_dtype = "float8_e4m3fn"
|
||||
if self.quant_config.is_checkpoint_bf16:
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=layer.weight_shape,
|
||||
dtype=layer.weight_dtype,
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
quant_attrs = extra_weight_attrs
|
||||
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
|
||||
quant_attrs = {
|
||||
**extra_weight_attrs,
|
||||
"tensor_track": TensorTracker(
|
||||
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
|
||||
),
|
||||
}
|
||||
set_weight_attrs(
|
||||
layer.weight,
|
||||
quant_attrs,
|
||||
)
|
||||
else:
|
||||
layer.weight_shape.reverse()
|
||||
layer.weight_dtype = "float8_e4m3fn"
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=layer.weight_shape,
|
||||
dtype=layer.weight_dtype,
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
|
||||
layer.weight_scale_inv = layer.create_parameter(
|
||||
shape=[
|
||||
(layer.output_size + self.quant_config.weight_block_size[0] - 1)
|
||||
// self.quant_config.weight_block_size[0],
|
||||
(layer.input_size + self.quant_config.weight_block_size[1] - 1)
|
||||
// self.quant_config.weight_block_size[1],
|
||||
],
|
||||
dtype="float32",
|
||||
is_bias=False,
|
||||
)
|
||||
|
||||
def process_weights_after_loading(self, layer) -> None:
|
||||
if not self.quant_config.is_checkpoint_bf16:
|
||||
return
|
||||
weight_tensor = layer.weight.transpose([1, 0])
|
||||
quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor)
|
||||
|
||||
if hasattr(layer.weight, "tensor_track"):
|
||||
layer.weight.tensor_track = None
|
||||
layer.weight.value().get_tensor()._clear()
|
||||
del layer.weight
|
||||
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=layer.weight_shape,
|
||||
dtype=layer.weight_dtype,
|
||||
shape=quanted_weight_tensor.shape,
|
||||
dtype="float8_e4m3fn",
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
layer.weight_scale_inv = layer.create_parameter(
|
||||
shape=weight_block_scale_tensor.shape,
|
||||
dtype="float32",
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
|
||||
layer.weight_scale = layer.create_parameter(
|
||||
shape=[
|
||||
(layer.output_size + self.quant_config.weight_block_size[0] - 1)
|
||||
// self.quant_config.weight_block_size[0],
|
||||
(layer.input_size + self.quant_config.weight_block_size[1] - 1)
|
||||
// self.quant_config.weight_block_size[1],
|
||||
],
|
||||
dtype="float32",
|
||||
is_bias=False,
|
||||
)
|
||||
layer.weight.copy_(quanted_weight_tensor, False)
|
||||
layer.weight_scale_inv.copy_(weight_block_scale_tensor, False)
|
||||
|
||||
def process_loaded_weights(self, layer, weights) -> None:
|
||||
weight_tensor = weights.transpose([1, 0])
|
||||
quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor)
|
||||
layer.weight.copy_(quanted_weight_tensor, False)
|
||||
layer.weight_scale.set_value(weight_block_scale_tensor)
|
||||
layer.weight_scale_inv.set_value(weight_block_scale_tensor)
|
||||
|
||||
def process_prequanted_weights(self, layer, state_dict, is_rearrange: bool = False):
|
||||
"""
|
||||
@@ -119,7 +173,7 @@ class BlockWiseFP8LinearMethod(QuantMethodBase):
|
||||
layer.weight.copy_(quant_weight.view("float8_e4m3fn"), False)
|
||||
|
||||
weight_scale = weight_scale.transpose([1, 0])
|
||||
layer.weight_scale.set_value(weight_scale)
|
||||
layer.weight_scale_inv.set_value(weight_scale)
|
||||
|
||||
def apply(self, layer, x):
|
||||
x, x_scale_tensor = fastdeploy.model_executor.ops.gpu.per_token_quant_padding(
|
||||
@@ -130,7 +184,7 @@ class BlockWiseFP8LinearMethod(QuantMethodBase):
|
||||
|
||||
deep_gemm.gemm_fp8_fp8_bf16_nt(
|
||||
(x, x_scale_tensor),
|
||||
(layer.weight, layer.weight_scale),
|
||||
(layer.weight, layer.weight_scale_inv),
|
||||
linear_out,
|
||||
)
|
||||
if layer.with_bias:
|
||||
|
@@ -37,6 +37,7 @@ class MixQuantConfig(QuantConfigBase):
|
||||
is_channel_wise: bool = False,
|
||||
has_zero_point: bool = False,
|
||||
is_permuted: bool = True,
|
||||
is_checkpoint_bf16: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.dense_quant_type = dense_quant_type
|
||||
@@ -52,6 +53,7 @@ class MixQuantConfig(QuantConfigBase):
|
||||
self.quant_min_bound = 0
|
||||
self.quant_round_type = 0
|
||||
self.is_permuted = is_permuted
|
||||
self.is_checkpoint_bf16 = is_checkpoint_bf16
|
||||
|
||||
def name(self) -> str:
|
||||
return "mix_quant"
|
||||
@@ -66,6 +68,7 @@ class MixQuantConfig(QuantConfigBase):
|
||||
config.get("is_channel_wise", False),
|
||||
config.get("has_zero_point", False),
|
||||
config.get("is_permuted", True),
|
||||
config.get("is_checkpoint_bf16", False),
|
||||
)
|
||||
|
||||
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
||||
@@ -73,13 +76,13 @@ class MixQuantConfig(QuantConfigBase):
|
||||
if layer.moe_tag == "Image":
|
||||
return (
|
||||
get_quantization_config(self.image_moe_quant_type)
|
||||
.from_config({"is_permuted": self.is_permuted})
|
||||
.from_config({"is_permuted": self.is_permuted, "self.is_checkpoint_bf16": self.is_checkpoint_bf16})
|
||||
.get_quant_method(layer)
|
||||
)
|
||||
else:
|
||||
return (
|
||||
get_quantization_config(self.moe_quant_type)
|
||||
.from_config({"is_permuted": self.is_permuted})
|
||||
.from_config({"is_permuted": self.is_permuted, "self.is_checkpoint_bf16": self.is_checkpoint_bf16})
|
||||
.get_quant_method(layer)
|
||||
)
|
||||
elif isinstance(layer, Attention):
|
||||
@@ -92,4 +95,8 @@ class MixQuantConfig(QuantConfigBase):
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
return get_quantization_config(self.dense_quant_type).from_config({}).get_quant_method(layer)
|
||||
return (
|
||||
get_quantization_config(self.dense_quant_type)
|
||||
.from_config({"self.is_checkpoint_bf16": self.is_checkpoint_bf16})
|
||||
.get_quant_method(layer)
|
||||
)
|
||||
|
Reference in New Issue
Block a user