mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00
[Model] Support PaddleYOLO YOLOv5 YOLOv6 YOLOv7 RTMDet models (#857)
* Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Add files via upload Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
@@ -16,6 +16,10 @@
|
|||||||
- [FasterRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/faster_rcnn)
|
- [FasterRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/faster_rcnn)
|
||||||
- [MaskRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/mask_rcnn)
|
- [MaskRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/mask_rcnn)
|
||||||
- [SSD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ssd)
|
- [SSD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ssd)
|
||||||
|
- [YOLOv5系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5)
|
||||||
|
- [YOLOv6系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)
|
||||||
|
- [YOLOv7系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)
|
||||||
|
- [RTMDet系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)
|
||||||
|
|
||||||
## 导出部署模型
|
## 导出部署模型
|
||||||
|
|
||||||
@@ -44,9 +48,18 @@
|
|||||||
| [yolox_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz) | 35MB | Box AP 40.4% | |
|
| [yolox_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz) | 35MB | Box AP 40.4% | |
|
||||||
| [faster_rcnn_r50_vd_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz) | 160MB | Box AP 40.8%| 暂不支持TensorRT |
|
| [faster_rcnn_r50_vd_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz) | 160MB | Box AP 40.8%| 暂不支持TensorRT |
|
||||||
| [mask_rcnn_r50_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz) | 128M | Box AP 37.4%, Mask AP 32.8%| 暂不支持TensorRT、ORT |
|
| [mask_rcnn_r50_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz) | 128M | Box AP 37.4%, Mask AP 32.8%| 暂不支持TensorRT、ORT |
|
||||||
| [ssd_mobilenet_v1_300_120e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_mobilenet_v1_300_120e_voc.tgz) | 21.7M | Box AP 73.8%| 暂不支持TensorRT、ORT |
|
| [ssd_mobilenet_v1_300_120e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_mobilenet_v1_300_120e_voc.tgz) | 24.9M | Box AP 73.8%| 暂不支持TensorRT、ORT |
|
||||||
| [ssd_vgg16_300_240e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_vgg16_300_240e_voc.tgz) | 97.7M | Box AP 77.8%| 暂不支持TensorRT、ORT |
|
| [ssd_vgg16_300_240e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_vgg16_300_240e_voc.tgz) | 106.5M | Box AP 77.8%| 暂不支持TensorRT、ORT |
|
||||||
| [ssdlite_mobilenet_v1_300_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ssdlite_mobilenet_v1_300_coco.tgz) | 24.4M | | 暂不支持TensorRT、ORT |
|
| [ssdlite_mobilenet_v1_300_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ssdlite_mobilenet_v1_300_coco.tgz) | 29.1M | | 暂不支持TensorRT、ORT |
|
||||||
|
| [rtmdet_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_l_300e_coco.tgz) | 224M | Box AP 51.2%| |
|
||||||
|
| [rtmdet_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_s_300e_coco.tgz) | 42M | Box AP 44.5%| |
|
||||||
|
| [yolov5_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_l_300e_coco.tgz) | 183M | Box AP 48.9%| |
|
||||||
|
| [yolov5_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_s_300e_coco.tgz) | 31M | Box AP 37.6%| |
|
||||||
|
| [yolov6_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_l_300e_coco.tgz) | 229M | Box AP 51.0%| |
|
||||||
|
| [yolov6_s_400e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_s_400e_coco.tgz) | 68M | Box AP 43.4%| |
|
||||||
|
| [yolov7_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_l_300e_coco.tgz) | 145M | Box AP 51.0%| |
|
||||||
|
| [yolov7_x_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_x_300e_coco.tgz) | 277M | Box AP 53.0%| |
|
||||||
|
|
||||||
## 详细部署文档
|
## 详细部署文档
|
||||||
|
|
||||||
- [Python部署](python)
|
- [Python部署](python)
|
||||||
|
@@ -29,3 +29,18 @@ target_link_libraries(infer_ppyolo_demo ${FASTDEPLOY_LIBS})
|
|||||||
|
|
||||||
add_executable(infer_mask_rcnn_demo ${PROJECT_SOURCE_DIR}/infer_mask_rcnn.cc)
|
add_executable(infer_mask_rcnn_demo ${PROJECT_SOURCE_DIR}/infer_mask_rcnn.cc)
|
||||||
target_link_libraries(infer_mask_rcnn_demo ${FASTDEPLOY_LIBS})
|
target_link_libraries(infer_mask_rcnn_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_ssd_demo ${PROJECT_SOURCE_DIR}/infer_ssd.cc)
|
||||||
|
target_link_libraries(infer_ssd_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_yolov5_demo ${PROJECT_SOURCE_DIR}/infer_yolov5.cc)
|
||||||
|
target_link_libraries(infer_yolov5_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_yolov6_demo ${PROJECT_SOURCE_DIR}/infer_yolov6.cc)
|
||||||
|
target_link_libraries(infer_yolov6_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_yolov7_demo ${PROJECT_SOURCE_DIR}/infer_yolov7.cc)
|
||||||
|
target_link_libraries(infer_yolov7_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_rtmdet_demo ${PROJECT_SOURCE_DIR}/infer_rtmdet.cc)
|
||||||
|
target_link_libraries(infer_rtmdet_demo ${FASTDEPLOY_LIBS})
|
||||||
|
@@ -1,6 +1,6 @@
|
|||||||
# PaddleDetection C++部署示例
|
# PaddleDetection C++部署示例
|
||||||
|
|
||||||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN/YOLOv5/YOLOv6/YOLOv7/RTMDet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||||
|
|
||||||
在部署前,需确认以下两个步骤
|
在部署前,需确认以下两个步骤
|
||||||
|
|
||||||
@@ -41,7 +41,7 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
|
|||||||
|
|
||||||
### 模型类
|
### 模型类
|
||||||
|
|
||||||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||||||
```c++
|
```c++
|
||||||
fastdeploy::vision::detection::PPYOLOE(
|
fastdeploy::vision::detection::PPYOLOE(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
|
129
examples/vision/detection/paddledetection/cpp/infer_rtmdet.cc
Normal file
129
examples/vision/detection/paddledetection/cpp/infer_rtmdet.cc
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
#ifdef WIN32
|
||||||
|
const char sep = '\\';
|
||||||
|
#else
|
||||||
|
const char sep = '/';
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseCpu();
|
||||||
|
auto model = fastdeploy::vision::detection::RTMDet(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
auto model = fastdeploy::vision::detection::RTMDet(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
option.UseTrtBackend();
|
||||||
|
auto model = fastdeploy::vision::detection::RTMDet(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
if (argc < 4) {
|
||||||
|
std::cout
|
||||||
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||||
|
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
|
"with gpu."
|
||||||
|
<< std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (std::atoi(argv[3]) == 0) {
|
||||||
|
CpuInfer(argv[1], argv[2]);
|
||||||
|
} else if (std::atoi(argv[3]) == 1) {
|
||||||
|
GpuInfer(argv[1], argv[2]);
|
||||||
|
} else if(std::atoi(argv[3]) == 2){
|
||||||
|
TrtInfer(argv[1], argv[2]);
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
129
examples/vision/detection/paddledetection/cpp/infer_yolov5.cc
Normal file
129
examples/vision/detection/paddledetection/cpp/infer_yolov5.cc
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
#ifdef WIN32
|
||||||
|
const char sep = '\\';
|
||||||
|
#else
|
||||||
|
const char sep = '/';
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseCpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv5(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv5(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
option.UseTrtBackend();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv5(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
if (argc < 4) {
|
||||||
|
std::cout
|
||||||
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||||
|
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
|
"with gpu."
|
||||||
|
<< std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (std::atoi(argv[3]) == 0) {
|
||||||
|
CpuInfer(argv[1], argv[2]);
|
||||||
|
} else if (std::atoi(argv[3]) == 1) {
|
||||||
|
GpuInfer(argv[1], argv[2]);
|
||||||
|
} else if(std::atoi(argv[3]) == 2){
|
||||||
|
TrtInfer(argv[1], argv[2]);
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
129
examples/vision/detection/paddledetection/cpp/infer_yolov6.cc
Normal file
129
examples/vision/detection/paddledetection/cpp/infer_yolov6.cc
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
#ifdef WIN32
|
||||||
|
const char sep = '\\';
|
||||||
|
#else
|
||||||
|
const char sep = '/';
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseCpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv6(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv6(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
option.UseTrtBackend();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv6(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
if (argc < 4) {
|
||||||
|
std::cout
|
||||||
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||||
|
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
|
"with gpu."
|
||||||
|
<< std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (std::atoi(argv[3]) == 0) {
|
||||||
|
CpuInfer(argv[1], argv[2]);
|
||||||
|
} else if (std::atoi(argv[3]) == 1) {
|
||||||
|
GpuInfer(argv[1], argv[2]);
|
||||||
|
} else if(std::atoi(argv[3]) == 2){
|
||||||
|
TrtInfer(argv[1], argv[2]);
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
128
examples/vision/detection/paddledetection/cpp/infer_yolov7.cc
Normal file
128
examples/vision/detection/paddledetection/cpp/infer_yolov7.cc
Normal file
@@ -0,0 +1,128 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
#ifdef WIN32
|
||||||
|
const char sep = '\\';
|
||||||
|
#else
|
||||||
|
const char sep = '/';
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseCpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv7(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv7(model_file, params_file,config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
auto im_bak = im.clone();
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im_bak, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||||
|
auto model_file = model_dir + sep + "model.pdmodel";
|
||||||
|
auto params_file = model_dir + sep + "model.pdiparams";
|
||||||
|
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||||
|
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
option.UseGpu();
|
||||||
|
option.UseTrtBackend();
|
||||||
|
auto model = fastdeploy::vision::detection::PaddleYOLOv7(model_file, params_file,
|
||||||
|
config_file, option);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Failed to initialize." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto im = cv::imread(image_file);
|
||||||
|
|
||||||
|
fastdeploy::vision::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Failed to predict." << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
if (argc < 4) {
|
||||||
|
std::cout
|
||||||
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||||
|
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||||
|
"with gpu."
|
||||||
|
<< std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (std::atoi(argv[3]) == 0) {
|
||||||
|
CpuInfer(argv[1], argv[2]);
|
||||||
|
} else if (std::atoi(argv[3]) == 1) {
|
||||||
|
GpuInfer(argv[1], argv[2]);
|
||||||
|
} else if(std::atoi(argv[3]) == 2){
|
||||||
|
TrtInfer(argv[1], argv[2]);
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
@@ -41,6 +41,10 @@ fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime
|
|||||||
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
|
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
|
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
|
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
|
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||||
```
|
```
|
||||||
|
|
||||||
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
||||||
|
@@ -0,0 +1,59 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_dir",
|
||||||
|
required=True,
|
||||||
|
help="Path of PaddleDetection model directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--image", required=True, help="Path of test image file.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default='cpu',
|
||||||
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_trt",
|
||||||
|
type=ast.literal_eval,
|
||||||
|
default=False,
|
||||||
|
help="Wether to use tensorrt.")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def build_option(args):
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
|
||||||
|
if args.device.lower() == "gpu":
|
||||||
|
option.use_gpu()
|
||||||
|
|
||||||
|
if args.use_trt:
|
||||||
|
option.use_trt_backend()
|
||||||
|
return option
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_arguments()
|
||||||
|
|
||||||
|
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||||
|
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||||
|
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||||
|
|
||||||
|
# 配置runtime,加载模型
|
||||||
|
runtime_option = build_option(args)
|
||||||
|
model = fd.vision.detection.RTMDet(
|
||||||
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||||
|
|
||||||
|
# 预测图片检测结果
|
||||||
|
im = cv2.imread(args.image)
|
||||||
|
result = model.predict(im.copy())
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
# 预测结果可视化
|
||||||
|
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||||
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||||
|
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,59 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_dir",
|
||||||
|
required=True,
|
||||||
|
help="Path of PaddleDetection model directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--image", required=True, help="Path of test image file.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default='cpu',
|
||||||
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_trt",
|
||||||
|
type=ast.literal_eval,
|
||||||
|
default=False,
|
||||||
|
help="Wether to use tensorrt.")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def build_option(args):
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
|
||||||
|
if args.device.lower() == "gpu":
|
||||||
|
option.use_gpu()
|
||||||
|
|
||||||
|
if args.use_trt:
|
||||||
|
option.use_trt_backend()
|
||||||
|
return option
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_arguments()
|
||||||
|
|
||||||
|
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||||
|
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||||
|
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||||
|
|
||||||
|
# 配置runtime,加载模型
|
||||||
|
runtime_option = build_option(args)
|
||||||
|
model = fd.vision.detection.PaddleYOLOv5(
|
||||||
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||||
|
|
||||||
|
# 预测图片检测结果
|
||||||
|
im = cv2.imread(args.image)
|
||||||
|
result = model.predict(im.copy())
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
# 预测结果可视化
|
||||||
|
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||||
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||||
|
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,59 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_dir",
|
||||||
|
required=True,
|
||||||
|
help="Path of PaddleDetection model directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--image", required=True, help="Path of test image file.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default='cpu',
|
||||||
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_trt",
|
||||||
|
type=ast.literal_eval,
|
||||||
|
default=False,
|
||||||
|
help="Wether to use tensorrt.")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def build_option(args):
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
|
||||||
|
if args.device.lower() == "gpu":
|
||||||
|
option.use_gpu()
|
||||||
|
|
||||||
|
if args.use_trt:
|
||||||
|
option.use_trt_backend()
|
||||||
|
return option
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_arguments()
|
||||||
|
|
||||||
|
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||||
|
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||||
|
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||||
|
|
||||||
|
# 配置runtime,加载模型
|
||||||
|
runtime_option = build_option(args)
|
||||||
|
model = fd.vision.detection.PaddleYOLOv6(
|
||||||
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||||
|
|
||||||
|
# 预测图片检测结果
|
||||||
|
im = cv2.imread(args.image)
|
||||||
|
result = model.predict(im.copy())
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
# 预测结果可视化
|
||||||
|
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||||
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||||
|
print("Visualized result save in ./visualized_result.jpg")
|
@@ -0,0 +1,59 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
import argparse
|
||||||
|
import ast
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_dir",
|
||||||
|
required=True,
|
||||||
|
help="Path of PaddleDetection model directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--image", required=True, help="Path of test image file.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default='cpu',
|
||||||
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_trt",
|
||||||
|
type=ast.literal_eval,
|
||||||
|
default=False,
|
||||||
|
help="Wether to use tensorrt.")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def build_option(args):
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
|
||||||
|
if args.device.lower() == "gpu":
|
||||||
|
option.use_gpu()
|
||||||
|
|
||||||
|
if args.use_trt:
|
||||||
|
option.use_trt_backend()
|
||||||
|
return option
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_arguments()
|
||||||
|
|
||||||
|
model_file = os.path.join(args.model_dir, "model.pdmodel")
|
||||||
|
params_file = os.path.join(args.model_dir, "model.pdiparams")
|
||||||
|
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
|
||||||
|
|
||||||
|
# 配置runtime,加载模型
|
||||||
|
runtime_option = build_option(args)
|
||||||
|
model = fd.vision.detection.PaddleYOLOv7(
|
||||||
|
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||||
|
|
||||||
|
# 预测图片检测结果
|
||||||
|
im = cv2.imread(args.image)
|
||||||
|
result = model.predict(im.copy())
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
# 预测结果可视化
|
||||||
|
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||||
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||||
|
print("Visualized result save in ./visualized_result.jpg")
|
@@ -177,6 +177,70 @@ class FASTDEPLOY_DECL SSD : public PPDetBase {
|
|||||||
virtual std::string ModelName() const { return "PaddleDetection/SSD"; }
|
virtual std::string ModelName() const { return "PaddleDetection/SSD"; }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL PaddleYOLOv5 : public PPDetBase {
|
||||||
|
public:
|
||||||
|
PaddleYOLOv5(const std::string& model_file, const std::string& params_file,
|
||||||
|
const std::string& config_file,
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
valid_cpu_backends = {Backend::ORT,Backend::PDINFER};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PaddleDetection/YOLOv5"; }
|
||||||
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL PaddleYOLOv6 : public PPDetBase {
|
||||||
|
public:
|
||||||
|
PaddleYOLOv6(const std::string& model_file, const std::string& params_file,
|
||||||
|
const std::string& config_file,
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT,Backend::PDINFER};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PaddleDetection/YOLOv6"; }
|
||||||
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL PaddleYOLOv7 : public PPDetBase {
|
||||||
|
public:
|
||||||
|
PaddleYOLOv7(const std::string& model_file, const std::string& params_file,
|
||||||
|
const std::string& config_file,
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
valid_cpu_backends = {Backend::ORT,Backend::PDINFER};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PaddleDetection/YOLOv7"; }
|
||||||
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL RTMDet : public PPDetBase {
|
||||||
|
public:
|
||||||
|
RTMDet(const std::string& model_file, const std::string& params_file,
|
||||||
|
const std::string& config_file,
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT, Backend::PDINFER};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PaddleDetection/RTMDet"; }
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace detection
|
} // namespace detection
|
||||||
} // namespace vision
|
} // namespace vision
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
@@ -115,5 +115,21 @@ void BindPPDet(pybind11::module& m) {
|
|||||||
pybind11::class_<vision::detection::SSD, vision::detection::PPDetBase>(m, "SSD")
|
pybind11::class_<vision::detection::SSD, vision::detection::PPDetBase>(m, "SSD")
|
||||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
ModelFormat>());
|
ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::detection::PaddleYOLOv5, vision::detection::PPDetBase>(m, "PaddleYOLOv5")
|
||||||
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::detection::PaddleYOLOv6, vision::detection::PPDetBase>(m, "PaddleYOLOv6")
|
||||||
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::detection::PaddleYOLOv7, vision::detection::PPDetBase>(m, "PaddleYOLOv7")
|
||||||
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::detection::RTMDet, vision::detection::PPDetBase>(m, "RTMDet")
|
||||||
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
ModelFormat>());
|
||||||
}
|
}
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
@@ -401,3 +401,103 @@ class SSD(PPYOLOE):
|
|||||||
|
|
||||||
clone_model = SSDClone(self._model.clone())
|
clone_model = SSDClone(self._model.clone())
|
||||||
return clone_model
|
return clone_model
|
||||||
|
|
||||||
|
|
||||||
|
class PaddleYOLOv5(PPYOLOE):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file,
|
||||||
|
config_file,
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a YOLOv5 model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g yolov5/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g yolov5/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv5 model only support model format of ModelFormat.Paddle now."
|
||||||
|
self._model = C.vision.detection.PaddleYOLOv5(
|
||||||
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
|
model_format)
|
||||||
|
assert self.initialized, "PaddleYOLOv5 model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class PaddleYOLOv6(PPYOLOE):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file,
|
||||||
|
config_file,
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a YOLOv6 model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g yolov6/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g yolov6/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv6 model only support model format of ModelFormat.Paddle now."
|
||||||
|
self._model = C.vision.detection.PaddleYOLOv6(
|
||||||
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
|
model_format)
|
||||||
|
assert self.initialized, "PaddleYOLOv6 model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class PaddleYOLOv7(PPYOLOE):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file,
|
||||||
|
config_file,
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a YOLOv7 model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g yolov7/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g yolov7/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv7 model only support model format of ModelFormat.Paddle now."
|
||||||
|
self._model = C.vision.detection.PaddleYOLOv7(
|
||||||
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
|
model_format)
|
||||||
|
assert self.initialized, "PaddleYOLOv7 model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class RTMDet(PPYOLOE):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file,
|
||||||
|
config_file,
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a RTMDet model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g rtmdet/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g rtmdet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
|
||||||
|
super(PPYOLOE, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
assert model_format == ModelFormat.PADDLE, "RTMDet model only support model format of ModelFormat.Paddle now."
|
||||||
|
self._model = C.vision.detection.RTMDet(
|
||||||
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
|
model_format)
|
||||||
|
assert self.initialized, "RTMDet model initialize failed."
|
Reference in New Issue
Block a user