[Other]Refactor PaddleSeg with preprocessor && postprocessor && support batch (#639)

* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-11-28 15:50:12 +08:00
committed by GitHub
parent d0307192f9
commit 312e1b097d
26 changed files with 1173 additions and 449 deletions

View File

@@ -0,0 +1,73 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace segmentation {
class FASTDEPLOY_DECL PaddleSegPreprocessor {
public:
/** \brief Create a preprocessor instance for PaddleSeg serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g ppliteseg/deploy.yaml
*/
explicit PaddleSegPreprocessor(const std::string& config_file);
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime, include image
* \return true if the preprocess successed, otherwise false
*/
virtual bool Run(
std::vector<FDMat>* images,
std::vector<FDTensor>* outputs,
std::map<std::string, std::vector<std::array<int, 2>>>* imgs_info);
/// Get is_vertical_screen property of PP-HumanSeg model, default is false
bool GetIsVerticalScreen() const {
return is_vertical_screen_;
}
/// Set is_vertical_screen value, bool type required
void SetIsVerticalScreen(bool value) {
is_vertical_screen_ = value;
}
// This function will disable normalize and hwc2chw in preprocessing step.
void DisableNormalizeAndPermute();
private:
virtual bool BuildPreprocessPipelineFromConfig();
std::vector<std::shared_ptr<Processor>> processors_;
std::string config_file_;
/** \brief For PP-HumanSeg model, set true if the input image is vertical image(height > width), default value is false
*/
bool is_vertical_screen_ = false;
// for recording the switch of normalize and hwc2chw
bool disable_normalize_and_permute_ = false;
bool is_contain_resize_op = false;
bool initialized_ = false;
};
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy