mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
[Other]Refactor PaddleSeg with preprocessor && postprocessor && support batch (#639)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
169
fastdeploy/vision/segmentation/ppseg/preprocessor.cc
Normal file
169
fastdeploy/vision/segmentation/ppseg/preprocessor.cc
Normal file
@@ -0,0 +1,169 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/vision/segmentation/ppseg/preprocessor.h"
|
||||
#include "fastdeploy/function/concat.h"
|
||||
#include "yaml-cpp/yaml.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace segmentation {
|
||||
|
||||
PaddleSegPreprocessor::PaddleSegPreprocessor(const std::string& config_file) {
|
||||
this->config_file_ = config_file;
|
||||
FDASSERT(BuildPreprocessPipelineFromConfig(), "Failed to create PaddleSegPreprocessor.");
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
bool PaddleSegPreprocessor::BuildPreprocessPipelineFromConfig() {
|
||||
processors_.clear();
|
||||
YAML::Node cfg;
|
||||
processors_.push_back(std::make_shared<BGR2RGB>());
|
||||
try {
|
||||
cfg = YAML::LoadFile(config_file_);
|
||||
} catch (YAML::BadFile& e) {
|
||||
FDERROR << "Failed to load yaml file " << config_file_
|
||||
<< ", maybe you should check this file." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (cfg["Deploy"]["transforms"]) {
|
||||
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
||||
for (const auto& op : preprocess_cfg) {
|
||||
FDASSERT(op.IsMap(),
|
||||
"Require the transform information in yaml be Map type.");
|
||||
if (op["type"].as<std::string>() == "Normalize") {
|
||||
if (!disable_normalize_and_permute_) {
|
||||
std::vector<float> mean = {0.5, 0.5, 0.5};
|
||||
std::vector<float> std = {0.5, 0.5, 0.5};
|
||||
if (op["mean"]) {
|
||||
mean = op["mean"].as<std::vector<float>>();
|
||||
}
|
||||
if (op["std"]) {
|
||||
std = op["std"].as<std::vector<float>>();
|
||||
}
|
||||
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
||||
}
|
||||
} else if (op["type"].as<std::string>() == "Resize") {
|
||||
is_contain_resize_op = true;
|
||||
const auto& target_size = op["target_size"];
|
||||
int resize_width = target_size[0].as<int>();
|
||||
int resize_height = target_size[1].as<int>();
|
||||
processors_.push_back(
|
||||
std::make_shared<Resize>(resize_width, resize_height));
|
||||
} else {
|
||||
std::string op_name = op["type"].as<std::string>();
|
||||
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (cfg["Deploy"]["input_shape"]) {
|
||||
auto input_shape = cfg["Deploy"]["input_shape"];
|
||||
int input_height = input_shape[2].as<int>();
|
||||
int input_width = input_shape[3].as<int>();
|
||||
if (input_height != -1 && input_width != -1 && !is_contain_resize_op) {
|
||||
is_contain_resize_op = true;
|
||||
processors_.insert(processors_.begin(),
|
||||
std::make_shared<Resize>(input_width, input_height));
|
||||
}
|
||||
}
|
||||
if (!disable_normalize_and_permute_) {
|
||||
processors_.push_back(std::make_shared<HWC2CHW>());
|
||||
}
|
||||
|
||||
// Fusion will improve performance
|
||||
FuseTransforms(&processors_);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleSegPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs, std::map<std::string, std::vector<std::array<int, 2>>>* imgs_info) {
|
||||
|
||||
if (!initialized_) {
|
||||
FDERROR << "The preprocessor is not initialized." << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (images->size() == 0) {
|
||||
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||
return false;
|
||||
}
|
||||
std::vector<std::array<int, 2>> shape_info;
|
||||
for (const auto& image : *images) {
|
||||
shape_info.push_back({static_cast<int>(image.Height()),
|
||||
static_cast<int>(image.Width())});
|
||||
}
|
||||
(*imgs_info)["shape_info"] = shape_info;
|
||||
for (size_t i = 0; i < processors_.size(); ++i) {
|
||||
if (processors_[i]->Name() == "Resize") {
|
||||
auto processor = dynamic_cast<Resize*>(processors_[i].get());
|
||||
int resize_width = -1;
|
||||
int resize_height = -1;
|
||||
std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
|
||||
if (is_vertical_screen_ && (resize_width > resize_height)) {
|
||||
if (!(processor->SetWidthAndHeight(resize_height, resize_width))) {
|
||||
FDERROR << "Failed to set width and height of "
|
||||
<< processors_[i]->Name() << " processor." << std::endl;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
size_t img_num = images->size();
|
||||
// Batch preprocess : resize all images to the largest image shape in batch
|
||||
if (!is_contain_resize_op && img_num > 1) {
|
||||
int max_width = 0;
|
||||
int max_height = 0;
|
||||
for (size_t i = 0; i < img_num; ++i) {
|
||||
max_width = std::max(max_width, ((*images)[i]).Width());
|
||||
max_height = std::max(max_height, ((*images)[i]).Height());
|
||||
}
|
||||
for (size_t i = 0; i < img_num; ++i) {
|
||||
Resize::Run(&(*images)[i], max_width, max_height);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < img_num; ++i) {
|
||||
for (size_t j = 0; j < processors_.size(); ++j) {
|
||||
if (!(*(processors_[j].get()))(&((*images)[i]))) {
|
||||
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
||||
<< "." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
outputs->resize(1);
|
||||
// Concat all the preprocessed data to a batch tensor
|
||||
std::vector<FDTensor> tensors(img_num);
|
||||
for (size_t i = 0; i < img_num; ++i) {
|
||||
(*images)[i].ShareWithTensor(&(tensors[i]));
|
||||
tensors[i].ExpandDim(0);
|
||||
}
|
||||
if (tensors.size() == 1) {
|
||||
(*outputs)[0] = std::move(tensors[0]);
|
||||
} else {
|
||||
function::Concat(tensors, &((*outputs)[0]), 0);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void PaddleSegPreprocessor::DisableNormalizeAndPermute(){
|
||||
disable_normalize_and_permute_ = true;
|
||||
// the DisableNormalizeAndPermute function will be invalid if the configuration file is loaded during preprocessing
|
||||
if (!BuildPreprocessPipelineFromConfig()) {
|
||||
FDERROR << "Failed to build preprocess pipeline from configuration file." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace segmentation
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user