mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[feature][vision] Add YOLOv7 End2End model with ORT NMS (#152)
* [feature][cmake] enable build fastdeploy with examples * [feature][cmake] enable build fastdeploy with examples * [feature][vision] Add YOLOv7 End2End model with ORT NMS * [docs] update yolov7end2end_ort docs update yolov7end2end_ort docs * [docs] update yolov7end2end_ort examples docs update yolov7end2end_ort examples docs * [docs] update yolov7end2end_ort examples docs Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
53
examples/vision/detection/yolov7end2end_ort/python/infer.py
Normal file
53
examples/vision/detection/yolov7end2end_ort/python/infer.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of yolov7 end2end onnx model.")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.YOLOv7End2EndORT(
|
||||
args.model, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片检测结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im.copy())
|
||||
print(result)
|
||||
|
||||
# 预测结果可视化
|
||||
vis_im = fd.vision.vis_detection(im, result)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
Reference in New Issue
Block a user