[FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)

* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
This commit is contained in:
YuanRisheng
2025-09-17 10:43:35 +08:00
committed by GitHub
parent c01a756912
commit 2e9e53ff7e
30 changed files with 169 additions and 131 deletions

View File

@@ -89,9 +89,9 @@ class GCUModelRunner(ModelRunnerBase):
self.sot_warmup_sizes = self.graph_opt_config.sot_warmup_sizes
# Initialize share inputs
self._init_share_inputs(self.parallel_config.max_num_seqs)
self._init_share_inputs(self.scheduler_config.max_num_seqs)
self.infer_seed_increment = paddle.full(
shape=[self.parallel_config.max_num_seqs, 1],
shape=[self.scheduler_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
).cpu()
@@ -689,13 +689,13 @@ class GCUModelRunner(ModelRunnerBase):
decoder_step_token_num = self.speculative_config.num_speculative_tokens + 1
group_size = np.ceil(num_heads / self.model_config.kv_num_heads)
decode_max_tile_size = self.parallel_config.max_num_seqs * np.ceil(
decode_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
(decoder_step_token_num * group_size) / decoder_block_shape_q
)
encode_max_tile_size = self.parallel_config.max_num_seqs * np.ceil(
encode_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
(self.model_config.max_model_len * group_size) / encoder_block_shape_q
)
kv_max_tile_size = self.parallel_config.max_num_seqs * np.ceil(
kv_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
self.model_config.max_model_len / self.fd_config.cache_config.block_size
)
self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
@@ -914,7 +914,7 @@ class GCUModelRunner(ModelRunnerBase):
capture_sizes = self.cudagraph_capture_sizes.copy()
for batch_size in sorted(capture_sizes, reverse=True):
self._dummy_run(
num_tokens=self.parallel_config.max_num_batched_tokens,
num_tokens=self.scheduler_config.max_num_batched_tokens,
batch_size=batch_size,
in_capturing=True,
expected_decode_len=expected_decode_len,
@@ -929,7 +929,7 @@ class GCUModelRunner(ModelRunnerBase):
start_time = time.perf_counter()
for batch_size in self.sot_warmup_sizes:
self._dummy_run(
num_tokens=self.parallel_config.max_num_batched_tokens,
num_tokens=self.scheduler_config.max_num_batched_tokens,
batch_size=batch_size,
)
logger.info(f"SOT warmup the model with the batch size:{batch_size}")
@@ -1140,8 +1140,8 @@ class GCUModelRunner(ModelRunnerBase):
# 2. Dummy run
self._dummy_run(
num_tokens=self.parallel_config.max_num_batched_tokens,
batch_size=min(self.parallel_config.max_num_seqs, 3),
num_tokens=self.scheduler_config.max_num_batched_tokens,
batch_size=min(self.scheduler_config.max_num_seqs, 3),
)
# 3. gc