mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[Backend] Add KunlunXin XPU deploy support (#894)
Revert "Revert "[Backend] Add KunlunXin XPU deploy support" (#893)"
This reverts commit 0990ab9b50
.
This commit is contained in:
4
examples/vision/detection/yolov5/cpp/CMakeLists.txt
Normal file → Executable file
4
examples/vision/detection/yolov5/cpp/CMakeLists.txt
Normal file → Executable file
@@ -12,3 +12,7 @@ include_directories(${FASTDEPLOY_INCS})
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
||||
|
||||
add_executable(infer_paddle_demo ${PROJECT_SOURCE_DIR}/infer_paddle_model.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_paddle_demo ${FASTDEPLOY_LIBS})
|
||||
|
24
examples/vision/detection/yolov5/cpp/README.md
Normal file → Executable file
24
examples/vision/detection/yolov5/cpp/README.md
Normal file → Executable file
@@ -12,16 +12,33 @@
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
# 下载 FastDeploy 预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
#下载官方转换好的yolov5模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
|
||||
#下载官方转换好的 yolov5 Paddle 模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
|
||||
tar -xvf yolov5s_infer.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 0
|
||||
# GPU推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 1
|
||||
# GPU上TensorRT推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 2
|
||||
# XPU推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 3
|
||||
```
|
||||
|
||||
上述的模型为 Paddle 模型的推理,如果想要做 ONNX 模型的推理,可以按照如下步骤:
|
||||
```bash
|
||||
# 1. 下载官方转换好的 yolov5 ONNX 模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# CPU推理
|
||||
./infer_demo yolov5s.onnx 000000014439.jpg 0
|
||||
# GPU推理
|
||||
@@ -29,7 +46,6 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo yolov5s.onnx 000000014439.jpg 2
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
|
||||
|
2
examples/vision/detection/yolov5/cpp/infer.cc
Normal file → Executable file
2
examples/vision/detection/yolov5/cpp/infer.cc
Normal file → Executable file
@@ -102,4 +102,4 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
154
examples/vision/detection/yolov5/cpp/infer_paddle_model.cc
Executable file
154
examples/vision/detection/yolov5/cpp/infer_paddle_model.cc
Executable file
@@ -0,0 +1,154 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseCpu();
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
option.SetTrtInputShape("images", {1, 3, 640, 640});
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void XpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseXpu();
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
"e.g ./infer_model ./yolov5s_infer ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with KunlunXin XPU."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
XpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
11
examples/vision/detection/yolov5/python/README.md
Normal file → Executable file
11
examples/vision/detection/yolov5/python/README.md
Normal file → Executable file
@@ -13,15 +13,18 @@ git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd examples/vision/detection/yolov5/python/
|
||||
|
||||
#下载yolov5模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_infer.tar
|
||||
tar -xf yolov5s_infer.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model yolov5s.onnx --image 000000014439.jpg --device cpu
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model yolov5s.onnx --image 000000014439.jpg --device gpu
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu
|
||||
# GPU上使用TensorRT推理
|
||||
python infer.py --model yolov5s.onnx --image 000000014439.jpg --device gpu --use_trt True
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu --use_trt True
|
||||
# XPU推理
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device xpu
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
21
examples/vision/detection/yolov5/python/infer.py
Normal file → Executable file
21
examples/vision/detection/yolov5/python/infer.py
Normal file → Executable file
@@ -1,20 +1,20 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", default=None, help="Path of yolov5 onnx model.")
|
||||
parser.add_argument("--model", default=None, help="Path of yolov5 model.")
|
||||
parser.add_argument(
|
||||
"--image", default=None, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
help="Type of inference device, support 'cpu' or 'gpu' or 'xpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
@@ -25,6 +25,8 @@ def parse_arguments():
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "xpu":
|
||||
option.use_xpu()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
@@ -37,14 +39,15 @@ def build_option(args):
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
if args.model is None:
|
||||
model = fd.download_model(name='YOLOv5s')
|
||||
else:
|
||||
model = args.model
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.YOLOv5(model, runtime_option=runtime_option)
|
||||
model_file = os.path.join(args.model, "model.pdmodel")
|
||||
params_file = os.path.join(args.model, "model.pdiparams")
|
||||
model = fd.vision.detection.YOLOv5(
|
||||
model_file,
|
||||
params_file,
|
||||
runtime_option=runtime_option,
|
||||
model_format=fd.ModelFormat.PADDLE)
|
||||
|
||||
# 预测图片检测结果
|
||||
if args.image is None:
|
||||
|
Reference in New Issue
Block a user