Completion add raw_prediction/text_after_process (#3356)

This commit is contained in:
memoryCoderC
2025-08-12 23:06:45 +08:00
committed by GitHub
parent 2c0d853067
commit 2d1a4cacdf
7 changed files with 51 additions and 15 deletions

View File

@@ -126,6 +126,8 @@ class ChatMessage(BaseModel):
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
@@ -183,6 +185,8 @@ class DeltaMessage(BaseModel):
completion_token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
@@ -219,6 +223,8 @@ class CompletionResponseChoice(BaseModel):
text: str
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
arrival_time: Optional[float] = None
logprobs: Optional[CompletionLogprobs] = None
reasoning_content: Optional[str] = None
@@ -261,6 +267,8 @@ class CompletionResponseStreamChoice(BaseModel):
logprobs: Optional[CompletionLogprobs] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
text_after_process: Optional[str] = None
raw_prediction: Optional[str] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None

View File

@@ -83,11 +83,12 @@ class OpenAIServingChat:
else:
request_id = f"chatcmpl-{uuid.uuid4()}"
api_server_logger.info(f"create chat completion request: {request_id}")
text_after_process = None
try:
current_req_dict = request.to_dict_for_infer(request_id)
current_req_dict["arrival_time"] = time.time()
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
text_after_process = current_req_dict.get("text_after_process")
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
except Exception as e:
@@ -104,10 +105,14 @@ class OpenAIServingChat:
return ErrorResponse(code=408, message=f"Request queued time exceed {self.max_waiting_time}")
if request.stream:
return self.chat_completion_stream_generator(request, request_id, request.model, prompt_token_ids)
return self.chat_completion_stream_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
else:
try:
return await self.chat_completion_full_generator(request, request_id, request.model, prompt_token_ids)
return await self.chat_completion_full_generator(
request, request_id, request.model, prompt_token_ids, text_after_process
)
except Exception as e:
return ErrorResponse(code=400, message=str(e))
@@ -124,6 +129,7 @@ class OpenAIServingChat:
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Streaming chat completion generator.
@@ -216,6 +222,7 @@ class OpenAIServingChat:
)
if request.return_token_ids:
choice.delta.prompt_token_ids = list(prompt_token_ids)
choice.delta.text_after_process = text_after_process
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
@@ -279,6 +286,7 @@ class OpenAIServingChat:
if request.return_token_ids:
choice.delta.completion_token_ids = list(output["token_ids"])
choice.delta.raw_prediction = output.get("raw_prediction")
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
@@ -329,6 +337,7 @@ class OpenAIServingChat:
request_id: str,
model_name: str,
prompt_token_ids: list(),
text_after_process: str,
):
"""
Full chat completion generator.
@@ -406,6 +415,8 @@ class OpenAIServingChat:
tool_calls=output.get("tool_call_content"),
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
completion_token_ids=completion_token_ids if request.return_token_ids else None,
text_after_process=text_after_process if request.return_token_ids else None,
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
)
logprobs_full_res = None
if logprob_contents:

View File

@@ -100,6 +100,7 @@ class OpenAIServingCompletion:
api_server_logger.info(f"start inference for request {num_choices}")
prompt_batched_token_ids = []
text_after_process_list = []
try:
for idx, prompt in enumerate(request_prompts):
request_id_idx = f"{request_id}-{idx}"
@@ -109,6 +110,7 @@ class OpenAIServingCompletion:
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
text_after_process_list.append(current_req_dict.get("text_after_process"))
prompt_batched_token_ids.append(prompt_token_ids)
except Exception as e:
return ErrorResponse(message=str(e), code=400)
@@ -131,6 +133,7 @@ class OpenAIServingCompletion:
created_time=created_time,
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids,
text_after_process_list=text_after_process_list,
)
else:
try:
@@ -141,6 +144,7 @@ class OpenAIServingCompletion:
created_time=created_time,
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids,
text_after_process_list=text_after_process_list,
)
except Exception as e:
return ErrorResponse(code=400, message=str(e))
@@ -156,6 +160,7 @@ class OpenAIServingCompletion:
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
text_after_process_list: list(),
):
"""
Process the full completion request with multiple choices.
@@ -225,6 +230,7 @@ class OpenAIServingCompletion:
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids,
completion_batched_token_ids=completion_batched_token_ids,
text_after_process_list=text_after_process_list,
)
except Exception as e:
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
@@ -251,6 +257,7 @@ class OpenAIServingCompletion:
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
text_after_process_list: list(),
):
"""
Process the stream completion request.
@@ -309,6 +316,7 @@ class OpenAIServingCompletion:
index=idx,
text="",
prompt_token_ids=list(prompt_batched_token_ids[idx]),
text_after_process=text_after_process_list[idx],
completion_token_ids=None,
)
],
@@ -337,6 +345,7 @@ class OpenAIServingCompletion:
text=output["text"],
prompt_token_ids=None,
completion_token_ids=output.get("token_ids") if request.return_token_ids else None,
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
tool_calls=output.get("tool_call_content"),
reasoning_content=output.get("reasoning_content"),
arrival_time=arrival_time,
@@ -398,6 +407,7 @@ class OpenAIServingCompletion:
model_name: str,
prompt_batched_token_ids: list(),
completion_batched_token_ids: list(),
text_after_process_list: list(),
) -> CompletionResponse:
choices: List[CompletionResponseChoice] = []
num_prompt_tokens = 0
@@ -444,6 +454,8 @@ class OpenAIServingCompletion:
text=output_text,
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
completion_token_ids=completion_token_ids if request.return_token_ids else None,
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
text_after_process=text_after_process_list[idx] if request.return_token_ids else None,
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call_content"),
logprobs=aggregated_logprobs,

View File

@@ -153,7 +153,7 @@ class ErnieProcessor(BaseDataProcessor):
if request.get("prompt"):
prompt = request.get("prompt")
prompt = prompt[0] if isinstance(prompt, list) else prompt
request["text_after_process"] = prompt
tokens = self.tokenizer.tokenize(prompt)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
request["prompt_token_ids"] = token_ids
@@ -247,6 +247,7 @@ class ErnieProcessor(BaseDataProcessor):
response_dict["outputs"]["reasoning_content"] = reasoning_content
else:
response_dict["outputs"]["text"] = full_text
response_dict["outputs"]["raw_prediction"] = full_text
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
del self.decode_status[req_id]
return response_dict
@@ -283,6 +284,7 @@ class ErnieProcessor(BaseDataProcessor):
response_dict["outputs"]["reasoning_content"] = reasoning_content
else:
response_dict["outputs"]["text"] = delta_text
response_dict["outputs"]["raw_prediction"] = delta_text
if is_end:
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
del self.decode_status[req_id]
@@ -307,7 +309,7 @@ class ErnieProcessor(BaseDataProcessor):
split_special_tokens=False,
add_special_tokens=False,
)
request_or_messages["text_after_process"] = spliced_message
req_id = None
if isinstance(request_or_messages, dict):
req_id = request_or_messages.get("request_id", None)

View File

@@ -209,6 +209,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
self._check_mm_limits(multimodal_data)
images = multimodal_data.get("image", None)
videos = multimodal_data.get("video", None)
request["text_after_process"] = request.get("prompt")
outputs = self.ernie_processor.text2ids(request["prompt"], images, videos)
elif request.get("messages"):
messages = request["messages"]

View File

@@ -494,16 +494,15 @@ class DataProcessor:
"""
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
prompt_token_str = (
self.tokenizer.apply_chat_template(
prompt_token_template = self.tokenizer.apply_chat_template(
request,
tokenize=False,
add_generation_prompt=request.get("add_generation_prompt", True),
)
.replace("<|image@placeholder|>", "")
.replace("<|video@placeholder|>", "")
prompt_token_str = prompt_token_template.replace("<|image@placeholder|>", "").replace(
"<|video@placeholder|>", ""
)
request["text_after_process"] = prompt_token_template
tokens = self.tokenizer.tokenize(prompt_token_str)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(

View File

@@ -264,6 +264,7 @@ class DataProcessor(BaseDataProcessor):
# processing prompt_token_ids
if not request.get("prompt_token_ids"):
if "prompt" in request:
request["text_after_process"] = request["prompt"]
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len).tolist()
elif "messages" in request:
if self.tokenizer.chat_template is None:
@@ -335,6 +336,7 @@ class DataProcessor(BaseDataProcessor):
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
if is_end:
full_text = previous_texts + delta_text
response_dict["outputs"]["raw_prediction"] = full_text
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
response_dict["outputs"]["text"] = text
@@ -364,7 +366,7 @@ class DataProcessor(BaseDataProcessor):
if token_ids[-1] == self.tokenizer.eos_token_id:
token_ids = token_ids[:-1]
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
response_dict["outputs"]["raw_prediction"] = delta_text
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
previous_texts,
@@ -455,6 +457,7 @@ class DataProcessor(BaseDataProcessor):
add_special_tokens=False,
return_tensors="pd",
)
request["text_after_process"] = spliced_message
req_id = None
tokens = self.tokenizer.tokenize(spliced_message)
if isinstance(request, dict):