mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
Completion add raw_prediction/text_after_process (#3356)
This commit is contained in:
@@ -126,6 +126,8 @@ class ChatMessage(BaseModel):
|
||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
text_after_process: Optional[str] = None
|
||||
raw_prediction: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
@@ -183,6 +185,8 @@ class DeltaMessage(BaseModel):
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||
text_after_process: Optional[str] = None
|
||||
raw_prediction: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
@@ -219,6 +223,8 @@ class CompletionResponseChoice(BaseModel):
|
||||
text: str
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
text_after_process: Optional[str] = None
|
||||
raw_prediction: Optional[str] = None
|
||||
arrival_time: Optional[float] = None
|
||||
logprobs: Optional[CompletionLogprobs] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
@@ -261,6 +267,8 @@ class CompletionResponseStreamChoice(BaseModel):
|
||||
logprobs: Optional[CompletionLogprobs] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
text_after_process: Optional[str] = None
|
||||
raw_prediction: Optional[str] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||
|
@@ -83,11 +83,12 @@ class OpenAIServingChat:
|
||||
else:
|
||||
request_id = f"chatcmpl-{uuid.uuid4()}"
|
||||
api_server_logger.info(f"create chat completion request: {request_id}")
|
||||
|
||||
text_after_process = None
|
||||
try:
|
||||
current_req_dict = request.to_dict_for_infer(request_id)
|
||||
current_req_dict["arrival_time"] = time.time()
|
||||
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
|
||||
text_after_process = current_req_dict.get("text_after_process")
|
||||
if isinstance(prompt_token_ids, np.ndarray):
|
||||
prompt_token_ids = prompt_token_ids.tolist()
|
||||
except Exception as e:
|
||||
@@ -104,10 +105,14 @@ class OpenAIServingChat:
|
||||
return ErrorResponse(code=408, message=f"Request queued time exceed {self.max_waiting_time}")
|
||||
|
||||
if request.stream:
|
||||
return self.chat_completion_stream_generator(request, request_id, request.model, prompt_token_ids)
|
||||
return self.chat_completion_stream_generator(
|
||||
request, request_id, request.model, prompt_token_ids, text_after_process
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return await self.chat_completion_full_generator(request, request_id, request.model, prompt_token_ids)
|
||||
return await self.chat_completion_full_generator(
|
||||
request, request_id, request.model, prompt_token_ids, text_after_process
|
||||
)
|
||||
except Exception as e:
|
||||
return ErrorResponse(code=400, message=str(e))
|
||||
|
||||
@@ -124,6 +129,7 @@ class OpenAIServingChat:
|
||||
request_id: str,
|
||||
model_name: str,
|
||||
prompt_token_ids: list(),
|
||||
text_after_process: str,
|
||||
):
|
||||
"""
|
||||
Streaming chat completion generator.
|
||||
@@ -216,6 +222,7 @@ class OpenAIServingChat:
|
||||
)
|
||||
if request.return_token_ids:
|
||||
choice.delta.prompt_token_ids = list(prompt_token_ids)
|
||||
choice.delta.text_after_process = text_after_process
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
@@ -279,6 +286,7 @@ class OpenAIServingChat:
|
||||
|
||||
if request.return_token_ids:
|
||||
choice.delta.completion_token_ids = list(output["token_ids"])
|
||||
choice.delta.raw_prediction = output.get("raw_prediction")
|
||||
if include_continuous_usage:
|
||||
chunk.usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
@@ -329,6 +337,7 @@ class OpenAIServingChat:
|
||||
request_id: str,
|
||||
model_name: str,
|
||||
prompt_token_ids: list(),
|
||||
text_after_process: str,
|
||||
):
|
||||
"""
|
||||
Full chat completion generator.
|
||||
@@ -406,6 +415,8 @@ class OpenAIServingChat:
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
|
||||
completion_token_ids=completion_token_ids if request.return_token_ids else None,
|
||||
text_after_process=text_after_process if request.return_token_ids else None,
|
||||
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
|
||||
)
|
||||
logprobs_full_res = None
|
||||
if logprob_contents:
|
||||
|
@@ -100,6 +100,7 @@ class OpenAIServingCompletion:
|
||||
|
||||
api_server_logger.info(f"start inference for request {num_choices}")
|
||||
prompt_batched_token_ids = []
|
||||
text_after_process_list = []
|
||||
try:
|
||||
for idx, prompt in enumerate(request_prompts):
|
||||
request_id_idx = f"{request_id}-{idx}"
|
||||
@@ -109,6 +110,7 @@ class OpenAIServingCompletion:
|
||||
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
|
||||
if isinstance(prompt_token_ids, np.ndarray):
|
||||
prompt_token_ids = prompt_token_ids.tolist()
|
||||
text_after_process_list.append(current_req_dict.get("text_after_process"))
|
||||
prompt_batched_token_ids.append(prompt_token_ids)
|
||||
except Exception as e:
|
||||
return ErrorResponse(message=str(e), code=400)
|
||||
@@ -131,6 +133,7 @@ class OpenAIServingCompletion:
|
||||
created_time=created_time,
|
||||
model_name=request.model,
|
||||
prompt_batched_token_ids=prompt_batched_token_ids,
|
||||
text_after_process_list=text_after_process_list,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
@@ -141,6 +144,7 @@ class OpenAIServingCompletion:
|
||||
created_time=created_time,
|
||||
model_name=request.model,
|
||||
prompt_batched_token_ids=prompt_batched_token_ids,
|
||||
text_after_process_list=text_after_process_list,
|
||||
)
|
||||
except Exception as e:
|
||||
return ErrorResponse(code=400, message=str(e))
|
||||
@@ -156,6 +160,7 @@ class OpenAIServingCompletion:
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
prompt_batched_token_ids: list(),
|
||||
text_after_process_list: list(),
|
||||
):
|
||||
"""
|
||||
Process the full completion request with multiple choices.
|
||||
@@ -225,6 +230,7 @@ class OpenAIServingCompletion:
|
||||
model_name=model_name,
|
||||
prompt_batched_token_ids=prompt_batched_token_ids,
|
||||
completion_batched_token_ids=completion_batched_token_ids,
|
||||
text_after_process_list=text_after_process_list,
|
||||
)
|
||||
except Exception as e:
|
||||
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
|
||||
@@ -251,6 +257,7 @@ class OpenAIServingCompletion:
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
prompt_batched_token_ids: list(),
|
||||
text_after_process_list: list(),
|
||||
):
|
||||
"""
|
||||
Process the stream completion request.
|
||||
@@ -309,6 +316,7 @@ class OpenAIServingCompletion:
|
||||
index=idx,
|
||||
text="",
|
||||
prompt_token_ids=list(prompt_batched_token_ids[idx]),
|
||||
text_after_process=text_after_process_list[idx],
|
||||
completion_token_ids=None,
|
||||
)
|
||||
],
|
||||
@@ -337,6 +345,7 @@ class OpenAIServingCompletion:
|
||||
text=output["text"],
|
||||
prompt_token_ids=None,
|
||||
completion_token_ids=output.get("token_ids") if request.return_token_ids else None,
|
||||
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
arrival_time=arrival_time,
|
||||
@@ -398,6 +407,7 @@ class OpenAIServingCompletion:
|
||||
model_name: str,
|
||||
prompt_batched_token_ids: list(),
|
||||
completion_batched_token_ids: list(),
|
||||
text_after_process_list: list(),
|
||||
) -> CompletionResponse:
|
||||
choices: List[CompletionResponseChoice] = []
|
||||
num_prompt_tokens = 0
|
||||
@@ -444,6 +454,8 @@ class OpenAIServingCompletion:
|
||||
text=output_text,
|
||||
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
|
||||
completion_token_ids=completion_token_ids if request.return_token_ids else None,
|
||||
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
|
||||
text_after_process=text_after_process_list[idx] if request.return_token_ids else None,
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
logprobs=aggregated_logprobs,
|
||||
|
@@ -153,7 +153,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
if request.get("prompt"):
|
||||
prompt = request.get("prompt")
|
||||
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
||||
|
||||
request["text_after_process"] = prompt
|
||||
tokens = self.tokenizer.tokenize(prompt)
|
||||
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
||||
request["prompt_token_ids"] = token_ids
|
||||
@@ -247,6 +247,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
||||
else:
|
||||
response_dict["outputs"]["text"] = full_text
|
||||
response_dict["outputs"]["raw_prediction"] = full_text
|
||||
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
||||
del self.decode_status[req_id]
|
||||
return response_dict
|
||||
@@ -283,6 +284,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
||||
else:
|
||||
response_dict["outputs"]["text"] = delta_text
|
||||
response_dict["outputs"]["raw_prediction"] = delta_text
|
||||
if is_end:
|
||||
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
||||
del self.decode_status[req_id]
|
||||
@@ -307,7 +309,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
split_special_tokens=False,
|
||||
add_special_tokens=False,
|
||||
)
|
||||
|
||||
request_or_messages["text_after_process"] = spliced_message
|
||||
req_id = None
|
||||
if isinstance(request_or_messages, dict):
|
||||
req_id = request_or_messages.get("request_id", None)
|
||||
|
@@ -209,6 +209,7 @@ class ErnieMoEVLProcessor(ErnieProcessor):
|
||||
self._check_mm_limits(multimodal_data)
|
||||
images = multimodal_data.get("image", None)
|
||||
videos = multimodal_data.get("video", None)
|
||||
request["text_after_process"] = request.get("prompt")
|
||||
outputs = self.ernie_processor.text2ids(request["prompt"], images, videos)
|
||||
elif request.get("messages"):
|
||||
messages = request["messages"]
|
||||
|
@@ -494,16 +494,15 @@ class DataProcessor:
|
||||
"""
|
||||
if self.tokenizer.chat_template is None:
|
||||
raise ValueError("This model does not support chat_template.")
|
||||
|
||||
prompt_token_str = (
|
||||
self.tokenizer.apply_chat_template(
|
||||
prompt_token_template = self.tokenizer.apply_chat_template(
|
||||
request,
|
||||
tokenize=False,
|
||||
add_generation_prompt=request.get("add_generation_prompt", True),
|
||||
)
|
||||
.replace("<|image@placeholder|>", "")
|
||||
.replace("<|video@placeholder|>", "")
|
||||
prompt_token_str = prompt_token_template.replace("<|image@placeholder|>", "").replace(
|
||||
"<|video@placeholder|>", ""
|
||||
)
|
||||
request["text_after_process"] = prompt_token_template
|
||||
tokens = self.tokenizer.tokenize(prompt_token_str)
|
||||
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
||||
data_processor_logger.info(
|
||||
|
@@ -264,6 +264,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
# processing prompt_token_ids
|
||||
if not request.get("prompt_token_ids"):
|
||||
if "prompt" in request:
|
||||
request["text_after_process"] = request["prompt"]
|
||||
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len).tolist()
|
||||
elif "messages" in request:
|
||||
if self.tokenizer.chat_template is None:
|
||||
@@ -335,6 +336,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
|
||||
if is_end:
|
||||
full_text = previous_texts + delta_text
|
||||
response_dict["outputs"]["raw_prediction"] = full_text
|
||||
if enable_thinking and self.reasoning_parser:
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
||||
response_dict["outputs"]["text"] = text
|
||||
@@ -364,7 +366,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
token_ids = token_ids[:-1]
|
||||
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
|
||||
|
||||
response_dict["outputs"]["raw_prediction"] = delta_text
|
||||
if enable_thinking and self.reasoning_parser:
|
||||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
|
||||
previous_texts,
|
||||
@@ -455,6 +457,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
add_special_tokens=False,
|
||||
return_tensors="pd",
|
||||
)
|
||||
request["text_after_process"] = spliced_message
|
||||
req_id = None
|
||||
tokens = self.tokenizer.tokenize(spliced_message)
|
||||
if isinstance(request, dict):
|
||||
|
Reference in New Issue
Block a user