mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
Completion add raw_prediction/text_after_process (#3356)
This commit is contained in:
@@ -83,11 +83,12 @@ class OpenAIServingChat:
|
||||
else:
|
||||
request_id = f"chatcmpl-{uuid.uuid4()}"
|
||||
api_server_logger.info(f"create chat completion request: {request_id}")
|
||||
|
||||
text_after_process = None
|
||||
try:
|
||||
current_req_dict = request.to_dict_for_infer(request_id)
|
||||
current_req_dict["arrival_time"] = time.time()
|
||||
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
|
||||
text_after_process = current_req_dict.get("text_after_process")
|
||||
if isinstance(prompt_token_ids, np.ndarray):
|
||||
prompt_token_ids = prompt_token_ids.tolist()
|
||||
except Exception as e:
|
||||
@@ -104,10 +105,14 @@ class OpenAIServingChat:
|
||||
return ErrorResponse(code=408, message=f"Request queued time exceed {self.max_waiting_time}")
|
||||
|
||||
if request.stream:
|
||||
return self.chat_completion_stream_generator(request, request_id, request.model, prompt_token_ids)
|
||||
return self.chat_completion_stream_generator(
|
||||
request, request_id, request.model, prompt_token_ids, text_after_process
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return await self.chat_completion_full_generator(request, request_id, request.model, prompt_token_ids)
|
||||
return await self.chat_completion_full_generator(
|
||||
request, request_id, request.model, prompt_token_ids, text_after_process
|
||||
)
|
||||
except Exception as e:
|
||||
return ErrorResponse(code=400, message=str(e))
|
||||
|
||||
@@ -124,6 +129,7 @@ class OpenAIServingChat:
|
||||
request_id: str,
|
||||
model_name: str,
|
||||
prompt_token_ids: list(),
|
||||
text_after_process: str,
|
||||
):
|
||||
"""
|
||||
Streaming chat completion generator.
|
||||
@@ -216,6 +222,7 @@ class OpenAIServingChat:
|
||||
)
|
||||
if request.return_token_ids:
|
||||
choice.delta.prompt_token_ids = list(prompt_token_ids)
|
||||
choice.delta.text_after_process = text_after_process
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
@@ -279,6 +286,7 @@ class OpenAIServingChat:
|
||||
|
||||
if request.return_token_ids:
|
||||
choice.delta.completion_token_ids = list(output["token_ids"])
|
||||
choice.delta.raw_prediction = output.get("raw_prediction")
|
||||
if include_continuous_usage:
|
||||
chunk.usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
@@ -329,6 +337,7 @@ class OpenAIServingChat:
|
||||
request_id: str,
|
||||
model_name: str,
|
||||
prompt_token_ids: list(),
|
||||
text_after_process: str,
|
||||
):
|
||||
"""
|
||||
Full chat completion generator.
|
||||
@@ -406,6 +415,8 @@ class OpenAIServingChat:
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
|
||||
completion_token_ids=completion_token_ids if request.return_token_ids else None,
|
||||
text_after_process=text_after_process if request.return_token_ids else None,
|
||||
raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
|
||||
)
|
||||
logprobs_full_res = None
|
||||
if logprob_contents:
|
||||
|
Reference in New Issue
Block a user