[Hackthon_4th 242] Support en_ppstructure_mobile_v2.0_SLANet (#1816)

* first draft

* update api name

* fix bug

* fix bug and

* fix bug in c api

* fix bug in c_api

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
thunder95
2023-04-27 10:45:14 +08:00
committed by GitHub
parent ef576ce875
commit 2c5fd91a7f
35 changed files with 2505 additions and 39 deletions

View File

@@ -0,0 +1,175 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--table_model",
required=True,
help="Path of Table recognition model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--table_char_dict_path",
type=str,
required=True,
help="tabel recognition dict path.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
)
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
table_option = fd.RuntimeOption()
if args.device.lower() == "gpu":
det_option.use_gpu(args.device_id)
rec_option.use_gpu(args.device_id)
table_option.use_gpu(args.device_id)
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
det_option.use_trt_backend()
rec_option.use_trt_backend()
table_option.use_trt_backend()
# If use TRT backend, the dynamic shape will be set as follow.
# We recommend that users set the length and height of the detection model to a multiple of 32.
# We also recommend that users set the Trt input shape as follow.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
table_option.set_trt_input_shape("x", [1, 3, 488, 488])
# Users could save TRT cache file to disk as follow.
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
table_option.set_trt_cache_file(args.table_model +
"/table_trt_cache.trt")
elif args.backend.lower() == "ort":
det_option.use_ort_backend()
rec_option.use_ort_backend()
table_option.use_ort_backend()
elif args.backend.lower() == "paddle":
det_option.use_paddle_infer_backend()
rec_option.use_paddle_infer_backend()
table_option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
det_option.use_openvino_backend()
rec_option.use_openvino_backend()
table_option.use_openvino_backend()
return det_option, rec_option, table_option
args = parse_arguments()
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
table_model_file = os.path.join(args.table_model, "inference.pdmodel")
table_params_file = os.path.join(args.table_model, "inference.pdiparams")
table_char_dict_path = args.table_char_dict_path
# Set the runtime option
det_option, rec_option, table_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
table_model = fd.vision.ocr.StructureV2Table(
table_model_file,
table_params_file,
table_char_dict_path,
runtime_option=table_option)
det_model.preprocessor.max_side_len = 960
det_model.postprocessor.det_db_thresh = 0.3
det_model.postprocessor.det_db_box_thresh = 0.6
det_model.postprocessor.det_db_unclip_ratio = 1.5
det_model.postprocessor.det_db_score_mode = "slow"
det_model.postprocessor.use_dilation = False
ppstructurev2_table = fd.vision.ocr.PPStructureV2Table(
det_model=det_model, rec_model=rec_model, table_model=table_model)
ppstructurev2_table.rec_batch_size = args.rec_bs
# Read the input image
im = cv2.imread(args.image)
# Predict and reutrn the results
result = ppstructurev2_table.predict(im)
print(result)
# Visuliaze the results.
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")