mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[fix] non-streaming api now returns full output ids if return_token_ids is enabled (#2951)
This commit is contained in:
@@ -372,19 +372,22 @@ class CompletionRequest(BaseModel):
|
||||
req_dict = {}
|
||||
if request_id is not None:
|
||||
req_dict["request_id"] = request_id
|
||||
|
||||
# parse request model into dict, priority: request > extra_body > suffix
|
||||
for key, value in self.dict().items():
|
||||
if value is not None:
|
||||
req_dict[key] = value
|
||||
if self.extra_body is not None:
|
||||
for key, value in self.extra_body.items():
|
||||
req_dict.setdefault(key, value)
|
||||
if self.suffix is not None:
|
||||
for key, value in self.suffix.items():
|
||||
req_dict[key] = value
|
||||
req_dict.setdefault(key, value)
|
||||
|
||||
if prompt is not None:
|
||||
req_dict["prompt"] = prompt
|
||||
|
||||
if self.prompt_token_ids is not None or (
|
||||
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
|
||||
):
|
||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||
if "prompt_token_ids" in req_dict:
|
||||
if "prompt" in req_dict:
|
||||
del req_dict["prompt"]
|
||||
else:
|
||||
@@ -508,21 +511,21 @@ class ChatCompletionRequest(BaseModel):
|
||||
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
|
||||
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
|
||||
|
||||
# parse request model into dict, priority: request > extra_body > metadata
|
||||
for key, value in self.dict().items():
|
||||
if value is not None:
|
||||
req_dict[key] = value
|
||||
if self.extra_body is not None:
|
||||
for key, value in self.extra_body.items():
|
||||
req_dict.setdefault(key, value)
|
||||
if self.metadata is not None:
|
||||
assert (
|
||||
"raw_request" not in self.metadata
|
||||
), "The parameter `raw_request` is not supported now, please use completion api instead."
|
||||
for key, value in self.metadata.items():
|
||||
req_dict[key] = value
|
||||
req_dict.setdefault(key, value)
|
||||
|
||||
for key, value in self.dict().items():
|
||||
if value is not None:
|
||||
req_dict[key] = value
|
||||
|
||||
if self.prompt_token_ids is not None or (
|
||||
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
|
||||
):
|
||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||
if "prompt_token_ids" in req_dict:
|
||||
if "messages" in req_dict:
|
||||
del req_dict["messages"]
|
||||
else:
|
||||
|
@@ -330,6 +330,7 @@ class OpenAIServingChat:
|
||||
previous_num_tokens = 0
|
||||
current_waiting_time = 0
|
||||
logprob_contents = []
|
||||
completion_token_ids = []
|
||||
while True:
|
||||
try:
|
||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
||||
@@ -361,6 +362,7 @@ class OpenAIServingChat:
|
||||
)
|
||||
# api_server_logger.debug(f"Client {request_id} received: {data}")
|
||||
previous_num_tokens += len(data["outputs"]["token_ids"])
|
||||
completion_token_ids.extend(data["outputs"]["token_ids"])
|
||||
# The logprob for handling the response
|
||||
output = data["outputs"]
|
||||
raw_top_logprobs = output["top_logprobs"]
|
||||
@@ -394,7 +396,7 @@ class OpenAIServingChat:
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
||||
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
|
||||
)
|
||||
logprobs_full_res = None
|
||||
if logprob_contents:
|
||||
|
@@ -151,6 +151,7 @@ class OpenAIServingCompletion:
|
||||
|
||||
valid_results = [dict()] * num_choices
|
||||
output_tokens = [0] * num_choices
|
||||
completion_batched_token_ids = [[] for _ in range(num_choices)]
|
||||
current_waiting_time = 0
|
||||
while num_choices > 0:
|
||||
try:
|
||||
@@ -174,6 +175,7 @@ class OpenAIServingCompletion:
|
||||
|
||||
self.engine_client.data_processor.process_response_dict(data, stream=False)
|
||||
output_tokens[rid] += len(data["outputs"]["token_ids"])
|
||||
completion_batched_token_ids[rid].extend(data["outputs"]["token_ids"])
|
||||
if data.get("finished", False):
|
||||
data["output_token_ids"] = output_tokens[rid]
|
||||
valid_results[rid] = data
|
||||
@@ -187,6 +189,7 @@ class OpenAIServingCompletion:
|
||||
created_time=created_time,
|
||||
model_name=model_name,
|
||||
prompt_batched_token_ids=prompt_batched_token_ids,
|
||||
completion_batched_token_ids=completion_batched_token_ids,
|
||||
)
|
||||
except Exception as e:
|
||||
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
|
||||
@@ -341,6 +344,7 @@ class OpenAIServingCompletion:
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
prompt_batched_token_ids: list(),
|
||||
completion_batched_token_ids: list()
|
||||
) -> CompletionResponse:
|
||||
choices: List[CompletionResponseChoice] = []
|
||||
num_prompt_tokens = 0
|
||||
@@ -352,6 +356,7 @@ class OpenAIServingCompletion:
|
||||
prompt_token_ids = prompt_batched_token_ids[idx]
|
||||
assert prompt_token_ids is not None
|
||||
prompt_text = final_res["prompt"]
|
||||
completion_token_ids = completion_batched_token_ids[idx]
|
||||
|
||||
output = final_res["outputs"]
|
||||
if request.echo:
|
||||
@@ -371,7 +376,7 @@ class OpenAIServingCompletion:
|
||||
index=len(choices),
|
||||
text=output_text,
|
||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||
completion_token_ids=output["token_ids"] if enable_return_token_ids else None,
|
||||
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
|
||||
reasoning_content=output.get('reasoning_content'),
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
logprobs=None,
|
||||
|
@@ -138,14 +138,15 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
request = self._apply_default_parameters(request)
|
||||
if not request.get("eos_token_ids"):
|
||||
request["eos_token_ids"] = self.eos_token_ids
|
||||
# 处理stop_sequences
|
||||
|
||||
# processing stop_sequences
|
||||
stop_sequences = request.get("stop", [])
|
||||
if stop_sequences:
|
||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||
request["stop_token_ids"] = stop_seqs
|
||||
request["stop_seqs_len"] = stop_seqs_len
|
||||
|
||||
# 处理prompt_token_ids
|
||||
# processing prompt_token_ids
|
||||
if not request.get("prompt_token_ids"):
|
||||
if request.get("prompt") is None and request.get("messages") is None:
|
||||
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
||||
@@ -161,7 +162,7 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
else:
|
||||
request["prompt_token_ids"] = self.messages2ids(request)
|
||||
|
||||
# 截断超过长度限制的prompt
|
||||
# truncate prompts that exceed the length limit
|
||||
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
||||
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
||||
if request.get("max_tokens") is None:
|
||||
|
Reference in New Issue
Block a user