[fix] non-streaming api now returns full output ids if return_token_ids is enabled (#2951)

This commit is contained in:
李泳桦
2025-07-22 14:35:56 +08:00
committed by GitHub
parent 2c6a9e887e
commit 2a8a2c06de
4 changed files with 31 additions and 20 deletions

View File

@@ -372,19 +372,22 @@ class CompletionRequest(BaseModel):
req_dict = {}
if request_id is not None:
req_dict["request_id"] = request_id
# parse request model into dict, priority: request > extra_body > suffix
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if self.extra_body is not None:
for key, value in self.extra_body.items():
req_dict.setdefault(key, value)
if self.suffix is not None:
for key, value in self.suffix.items():
req_dict[key] = value
req_dict.setdefault(key, value)
if prompt is not None:
req_dict["prompt"] = prompt
if self.prompt_token_ids is not None or (
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
):
req_dict["prompt_token_ids"] = self.prompt_token_ids
if "prompt_token_ids" in req_dict:
if "prompt" in req_dict:
del req_dict["prompt"]
else:
@@ -508,21 +511,21 @@ class ChatCompletionRequest(BaseModel):
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
# parse request model into dict, priority: request > extra_body > metadata
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if self.extra_body is not None:
for key, value in self.extra_body.items():
req_dict.setdefault(key, value)
if self.metadata is not None:
assert (
"raw_request" not in self.metadata
), "The parameter `raw_request` is not supported now, please use completion api instead."
for key, value in self.metadata.items():
req_dict[key] = value
req_dict.setdefault(key, value)
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if self.prompt_token_ids is not None or (
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
):
req_dict["prompt_token_ids"] = self.prompt_token_ids
if "prompt_token_ids" in req_dict:
if "messages" in req_dict:
del req_dict["messages"]
else:

View File

@@ -330,6 +330,7 @@ class OpenAIServingChat:
previous_num_tokens = 0
current_waiting_time = 0
logprob_contents = []
completion_token_ids = []
while True:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
@@ -361,6 +362,7 @@ class OpenAIServingChat:
)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
completion_token_ids.extend(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
raw_top_logprobs = output["top_logprobs"]
@@ -394,7 +396,7 @@ class OpenAIServingChat:
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call_content"),
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
)
logprobs_full_res = None
if logprob_contents:

View File

@@ -151,6 +151,7 @@ class OpenAIServingCompletion:
valid_results = [dict()] * num_choices
output_tokens = [0] * num_choices
completion_batched_token_ids = [[] for _ in range(num_choices)]
current_waiting_time = 0
while num_choices > 0:
try:
@@ -174,6 +175,7 @@ class OpenAIServingCompletion:
self.engine_client.data_processor.process_response_dict(data, stream=False)
output_tokens[rid] += len(data["outputs"]["token_ids"])
completion_batched_token_ids[rid].extend(data["outputs"]["token_ids"])
if data.get("finished", False):
data["output_token_ids"] = output_tokens[rid]
valid_results[rid] = data
@@ -187,6 +189,7 @@ class OpenAIServingCompletion:
created_time=created_time,
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids,
completion_batched_token_ids=completion_batched_token_ids,
)
except Exception as e:
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
@@ -341,6 +344,7 @@ class OpenAIServingCompletion:
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
completion_batched_token_ids: list()
) -> CompletionResponse:
choices: List[CompletionResponseChoice] = []
num_prompt_tokens = 0
@@ -352,6 +356,7 @@ class OpenAIServingCompletion:
prompt_token_ids = prompt_batched_token_ids[idx]
assert prompt_token_ids is not None
prompt_text = final_res["prompt"]
completion_token_ids = completion_batched_token_ids[idx]
output = final_res["outputs"]
if request.echo:
@@ -371,7 +376,7 @@ class OpenAIServingCompletion:
index=len(choices),
text=output_text,
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
completion_token_ids=output["token_ids"] if enable_return_token_ids else None,
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
reasoning_content=output.get('reasoning_content'),
tool_calls=output.get("tool_call_content"),
logprobs=None,

View File

@@ -138,14 +138,15 @@ class ErnieProcessor(BaseDataProcessor):
request = self._apply_default_parameters(request)
if not request.get("eos_token_ids"):
request["eos_token_ids"] = self.eos_token_ids
# 处理stop_sequences
# processing stop_sequences
stop_sequences = request.get("stop", [])
if stop_sequences:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request["stop_token_ids"] = stop_seqs
request["stop_seqs_len"] = stop_seqs_len
# 处理prompt_token_ids
# processing prompt_token_ids
if not request.get("prompt_token_ids"):
if request.get("prompt") is None and request.get("messages") is None:
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
@@ -161,7 +162,7 @@ class ErnieProcessor(BaseDataProcessor):
else:
request["prompt_token_ids"] = self.messages2ids(request)
# 截断超过长度限制的prompt
# truncate prompts that exceed the length limit
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
if request.get("max_tokens") is None: