mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[fix] non-streaming api now returns full output ids if return_token_ids is enabled (#2951)
This commit is contained in:
@@ -372,19 +372,22 @@ class CompletionRequest(BaseModel):
|
|||||||
req_dict = {}
|
req_dict = {}
|
||||||
if request_id is not None:
|
if request_id is not None:
|
||||||
req_dict["request_id"] = request_id
|
req_dict["request_id"] = request_id
|
||||||
|
|
||||||
|
# parse request model into dict, priority: request > extra_body > suffix
|
||||||
for key, value in self.dict().items():
|
for key, value in self.dict().items():
|
||||||
if value is not None:
|
if value is not None:
|
||||||
req_dict[key] = value
|
req_dict[key] = value
|
||||||
|
if self.extra_body is not None:
|
||||||
|
for key, value in self.extra_body.items():
|
||||||
|
req_dict.setdefault(key, value)
|
||||||
if self.suffix is not None:
|
if self.suffix is not None:
|
||||||
for key, value in self.suffix.items():
|
for key, value in self.suffix.items():
|
||||||
req_dict[key] = value
|
req_dict.setdefault(key, value)
|
||||||
|
|
||||||
if prompt is not None:
|
if prompt is not None:
|
||||||
req_dict["prompt"] = prompt
|
req_dict["prompt"] = prompt
|
||||||
|
|
||||||
if self.prompt_token_ids is not None or (
|
if "prompt_token_ids" in req_dict:
|
||||||
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
|
|
||||||
):
|
|
||||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
|
||||||
if "prompt" in req_dict:
|
if "prompt" in req_dict:
|
||||||
del req_dict["prompt"]
|
del req_dict["prompt"]
|
||||||
else:
|
else:
|
||||||
@@ -508,21 +511,21 @@ class ChatCompletionRequest(BaseModel):
|
|||||||
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
|
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
|
||||||
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
|
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
|
||||||
|
|
||||||
|
# parse request model into dict, priority: request > extra_body > metadata
|
||||||
|
for key, value in self.dict().items():
|
||||||
|
if value is not None:
|
||||||
|
req_dict[key] = value
|
||||||
|
if self.extra_body is not None:
|
||||||
|
for key, value in self.extra_body.items():
|
||||||
|
req_dict.setdefault(key, value)
|
||||||
if self.metadata is not None:
|
if self.metadata is not None:
|
||||||
assert (
|
assert (
|
||||||
"raw_request" not in self.metadata
|
"raw_request" not in self.metadata
|
||||||
), "The parameter `raw_request` is not supported now, please use completion api instead."
|
), "The parameter `raw_request` is not supported now, please use completion api instead."
|
||||||
for key, value in self.metadata.items():
|
for key, value in self.metadata.items():
|
||||||
req_dict[key] = value
|
req_dict.setdefault(key, value)
|
||||||
|
|
||||||
for key, value in self.dict().items():
|
if "prompt_token_ids" in req_dict:
|
||||||
if value is not None:
|
|
||||||
req_dict[key] = value
|
|
||||||
|
|
||||||
if self.prompt_token_ids is not None or (
|
|
||||||
self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None
|
|
||||||
):
|
|
||||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
|
||||||
if "messages" in req_dict:
|
if "messages" in req_dict:
|
||||||
del req_dict["messages"]
|
del req_dict["messages"]
|
||||||
else:
|
else:
|
||||||
|
@@ -330,6 +330,7 @@ class OpenAIServingChat:
|
|||||||
previous_num_tokens = 0
|
previous_num_tokens = 0
|
||||||
current_waiting_time = 0
|
current_waiting_time = 0
|
||||||
logprob_contents = []
|
logprob_contents = []
|
||||||
|
completion_token_ids = []
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
||||||
@@ -361,6 +362,7 @@ class OpenAIServingChat:
|
|||||||
)
|
)
|
||||||
# api_server_logger.debug(f"Client {request_id} received: {data}")
|
# api_server_logger.debug(f"Client {request_id} received: {data}")
|
||||||
previous_num_tokens += len(data["outputs"]["token_ids"])
|
previous_num_tokens += len(data["outputs"]["token_ids"])
|
||||||
|
completion_token_ids.extend(data["outputs"]["token_ids"])
|
||||||
# The logprob for handling the response
|
# The logprob for handling the response
|
||||||
output = data["outputs"]
|
output = data["outputs"]
|
||||||
raw_top_logprobs = output["top_logprobs"]
|
raw_top_logprobs = output["top_logprobs"]
|
||||||
@@ -394,7 +396,7 @@ class OpenAIServingChat:
|
|||||||
reasoning_content=output.get("reasoning_content"),
|
reasoning_content=output.get("reasoning_content"),
|
||||||
tool_calls=output.get("tool_call_content"),
|
tool_calls=output.get("tool_call_content"),
|
||||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||||
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
|
||||||
)
|
)
|
||||||
logprobs_full_res = None
|
logprobs_full_res = None
|
||||||
if logprob_contents:
|
if logprob_contents:
|
||||||
|
@@ -151,6 +151,7 @@ class OpenAIServingCompletion:
|
|||||||
|
|
||||||
valid_results = [dict()] * num_choices
|
valid_results = [dict()] * num_choices
|
||||||
output_tokens = [0] * num_choices
|
output_tokens = [0] * num_choices
|
||||||
|
completion_batched_token_ids = [[] for _ in range(num_choices)]
|
||||||
current_waiting_time = 0
|
current_waiting_time = 0
|
||||||
while num_choices > 0:
|
while num_choices > 0:
|
||||||
try:
|
try:
|
||||||
@@ -174,6 +175,7 @@ class OpenAIServingCompletion:
|
|||||||
|
|
||||||
self.engine_client.data_processor.process_response_dict(data, stream=False)
|
self.engine_client.data_processor.process_response_dict(data, stream=False)
|
||||||
output_tokens[rid] += len(data["outputs"]["token_ids"])
|
output_tokens[rid] += len(data["outputs"]["token_ids"])
|
||||||
|
completion_batched_token_ids[rid].extend(data["outputs"]["token_ids"])
|
||||||
if data.get("finished", False):
|
if data.get("finished", False):
|
||||||
data["output_token_ids"] = output_tokens[rid]
|
data["output_token_ids"] = output_tokens[rid]
|
||||||
valid_results[rid] = data
|
valid_results[rid] = data
|
||||||
@@ -187,6 +189,7 @@ class OpenAIServingCompletion:
|
|||||||
created_time=created_time,
|
created_time=created_time,
|
||||||
model_name=model_name,
|
model_name=model_name,
|
||||||
prompt_batched_token_ids=prompt_batched_token_ids,
|
prompt_batched_token_ids=prompt_batched_token_ids,
|
||||||
|
completion_batched_token_ids=completion_batched_token_ids,
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
|
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
|
||||||
@@ -341,6 +344,7 @@ class OpenAIServingCompletion:
|
|||||||
created_time: int,
|
created_time: int,
|
||||||
model_name: str,
|
model_name: str,
|
||||||
prompt_batched_token_ids: list(),
|
prompt_batched_token_ids: list(),
|
||||||
|
completion_batched_token_ids: list()
|
||||||
) -> CompletionResponse:
|
) -> CompletionResponse:
|
||||||
choices: List[CompletionResponseChoice] = []
|
choices: List[CompletionResponseChoice] = []
|
||||||
num_prompt_tokens = 0
|
num_prompt_tokens = 0
|
||||||
@@ -352,6 +356,7 @@ class OpenAIServingCompletion:
|
|||||||
prompt_token_ids = prompt_batched_token_ids[idx]
|
prompt_token_ids = prompt_batched_token_ids[idx]
|
||||||
assert prompt_token_ids is not None
|
assert prompt_token_ids is not None
|
||||||
prompt_text = final_res["prompt"]
|
prompt_text = final_res["prompt"]
|
||||||
|
completion_token_ids = completion_batched_token_ids[idx]
|
||||||
|
|
||||||
output = final_res["outputs"]
|
output = final_res["outputs"]
|
||||||
if request.echo:
|
if request.echo:
|
||||||
@@ -371,7 +376,7 @@ class OpenAIServingCompletion:
|
|||||||
index=len(choices),
|
index=len(choices),
|
||||||
text=output_text,
|
text=output_text,
|
||||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||||
completion_token_ids=output["token_ids"] if enable_return_token_ids else None,
|
completion_token_ids=completion_token_ids if enable_return_token_ids else None,
|
||||||
reasoning_content=output.get('reasoning_content'),
|
reasoning_content=output.get('reasoning_content'),
|
||||||
tool_calls=output.get("tool_call_content"),
|
tool_calls=output.get("tool_call_content"),
|
||||||
logprobs=None,
|
logprobs=None,
|
||||||
|
@@ -138,14 +138,15 @@ class ErnieProcessor(BaseDataProcessor):
|
|||||||
request = self._apply_default_parameters(request)
|
request = self._apply_default_parameters(request)
|
||||||
if not request.get("eos_token_ids"):
|
if not request.get("eos_token_ids"):
|
||||||
request["eos_token_ids"] = self.eos_token_ids
|
request["eos_token_ids"] = self.eos_token_ids
|
||||||
# 处理stop_sequences
|
|
||||||
|
# processing stop_sequences
|
||||||
stop_sequences = request.get("stop", [])
|
stop_sequences = request.get("stop", [])
|
||||||
if stop_sequences:
|
if stop_sequences:
|
||||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||||
request["stop_token_ids"] = stop_seqs
|
request["stop_token_ids"] = stop_seqs
|
||||||
request["stop_seqs_len"] = stop_seqs_len
|
request["stop_seqs_len"] = stop_seqs_len
|
||||||
|
|
||||||
# 处理prompt_token_ids
|
# processing prompt_token_ids
|
||||||
if not request.get("prompt_token_ids"):
|
if not request.get("prompt_token_ids"):
|
||||||
if request.get("prompt") is None and request.get("messages") is None:
|
if request.get("prompt") is None and request.get("messages") is None:
|
||||||
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
||||||
@@ -161,7 +162,7 @@ class ErnieProcessor(BaseDataProcessor):
|
|||||||
else:
|
else:
|
||||||
request["prompt_token_ids"] = self.messages2ids(request)
|
request["prompt_token_ids"] = self.messages2ids(request)
|
||||||
|
|
||||||
# 截断超过长度限制的prompt
|
# truncate prompts that exceed the length limit
|
||||||
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
||||||
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
||||||
if request.get("max_tokens") is None:
|
if request.get("max_tokens") is None:
|
||||||
|
Reference in New Issue
Block a user