[Quantization] Update auto compression configs files. (#846)

* Fix links in readme

* Fix links in readme

* Update PPOCRv2/v3 examples

* Update auto compression configs
This commit is contained in:
yunyaoXYY
2022-12-11 14:16:13 +08:00
committed by GitHub
parent e877f0fd07
commit 29f034cf93
14 changed files with 23 additions and 28 deletions

View File

@@ -11,15 +11,14 @@ FastDeploy提供了一系列高效易用的工具优化部署体验, 提升推
FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了一键模型自动化压缩的工具, 用户可以轻松地通过一行命令对模型进行自动化压缩, 并在FastDeploy上部署压缩后的模型, 提升推理速度. 本文档将以FastDeploy一键模型自动化压缩工具为例, 介绍如何安装此工具, 并提供相应的使用文档. FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了一键模型自动化压缩的工具, 用户可以轻松地通过一行命令对模型进行自动化压缩, 并在FastDeploy上部署压缩后的模型, 提升推理速度. 本文档将以FastDeploy一键模型自动化压缩工具为例, 介绍如何安装此工具, 并提供相应的使用文档.
### 环境准备 ### 环境准备
1.用户参考PaddlePaddle官网, 安装develop版本 1.用户参考PaddlePaddle官网, 安装Paddle 2.4 版本
``` ```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
``` ```
2.安装PaddleSlim develop版本 2.安装PaddleSlim 2.4 版本
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim pip install paddleslim==2.4.0
python setup.py install
``` ```
3.安装fastdeploy-tools工具包 3.安装fastdeploy-tools工具包

View File

@@ -11,15 +11,14 @@ FastDeploy provides a series of efficient and easy-to-use tools to optimize the
Based on PaddleSlim's Auto Compression Toolkit (ACT), FastDeploy provides users with a one-click model automation compression tool that allows users to easily compress the model with a single command. This document will take FastDeploy's one-click model automation compression tool as an example, introduce how to install the tool, and provide the corresponding documentation for usage. Based on PaddleSlim's Auto Compression Toolkit (ACT), FastDeploy provides users with a one-click model automation compression tool that allows users to easily compress the model with a single command. This document will take FastDeploy's one-click model automation compression tool as an example, introduce how to install the tool, and provide the corresponding documentation for usage.
### Environmental Preparation ### Environmental Preparation
1.Install PaddlePaddle develop version 1.Install PaddlePaddle 2.4 version
``` ```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
``` ```
2.Install PaddleSlim dev version 2.Install PaddleSlim 2.4 version
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim pip install paddleslim==2.4.0
python setup.py install
``` ```
3.Install fastdeploy-tools package 3.Install fastdeploy-tools package

View File

@@ -6,15 +6,14 @@ FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了
### 环境依赖 ### 环境依赖
1.用户参考PaddlePaddle官网, 安装develop版本 1.用户参考PaddlePaddle官网, 安装Paddle 2.4 版本
``` ```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
``` ```
2.安装paddleslim-develop版本 2.安装PaddleSlim 2.4 版本
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim pip install paddleslim==2.4.0
python setup.py install
``` ```
### 一键模型自动化压缩工具安装方式 ### 一键模型自动化压缩工具安装方式

View File

@@ -7,17 +7,14 @@ We take the Yolov5 series as an example to demonstrate how to install and execut
### Environment Dependencies ### Environment Dependencies
1. Install the develop version downloaded from PaddlePaddle official website. 1.Install PaddlePaddle 2.4 version
``` ```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
``` ```
2.Install PaddleSlim-develop 2.Install PaddleSlim 2.4 version
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim pip install paddleslim==2.4.0
python setup.py install
``` ```
### Install Fastdeploy Auto Compression Toolkit ### Install Fastdeploy Auto Compression Toolkit

View File

@@ -24,7 +24,7 @@ Distillation:
alpha: 1.0 #蒸馏loss所占权重 alpha: 1.0 #蒸馏loss所占权重
loss: soft_label #蒸馏loss算法 loss: soft_label #蒸馏loss算法
Quantization: QuantAware:
onnx_format: true #是否采用ONNX量化标准格式, 要在FastDeploy上部署, 必须选true onnx_format: true #是否采用ONNX量化标准格式, 要在FastDeploy上部署, 必须选true
use_pact: true #量化训练是否使用PACT方法 use_pact: true #量化训练是否使用PACT方法
activation_quantize_type: 'moving_average_abs_max' #激活量化方式 activation_quantize_type: 'moving_average_abs_max' #激活量化方式

View File

@@ -26,7 +26,7 @@ Distillation:
alpha: 1.0 #Distillation loss weight alpha: 1.0 #Distillation loss weight
loss: soft_label #Distillation loss algorithm loss: soft_label #Distillation loss algorithm
Quantization: QuantAware:
onnx_format: true #Whether to use ONNX quantization standard format or not, must be true to deploy on FastDeploy onnx_format: true #Whether to use ONNX quantization standard format or not, must be true to deploy on FastDeploy
use_pact: true #Whether to use the PACT method for training use_pact: true #Whether to use the PACT method for training
activation_quantize_type: 'moving_average_abs_max' #Activations quantization methods activation_quantize_type: 'moving_average_abs_max' #Activations quantization methods

View File

@@ -17,7 +17,7 @@ Distillation:
- softmax_0.tmp_0 - softmax_0.tmp_0
Quantization: QuantAware:
use_pact: true use_pact: true
activation_bits: 8 activation_bits: 8
is_full_quantize: false is_full_quantize: false

View File

@@ -16,7 +16,7 @@ Distillation:
node: node:
- softmax_0.tmp_0 - softmax_0.tmp_0
Quantization: QuantAware:
use_pact: true use_pact: true
activation_bits: 8 activation_bits: 8
is_full_quantize: false is_full_quantize: false

View File

@@ -14,7 +14,7 @@ Distillation:
alpha: 1.0 alpha: 1.0
loss: soft_label loss: soft_label
Quantization: QuantAware:
onnx_format: true onnx_format: true
use_pact: true use_pact: true
activation_quantize_type: 'moving_average_abs_max' activation_quantize_type: 'moving_average_abs_max'

View File

@@ -14,7 +14,7 @@ Distillation:
alpha: 1.0 alpha: 1.0
loss: soft_label loss: soft_label
Quantization: QuantAware:
onnx_format: true onnx_format: true
use_pact: true use_pact: true
activation_quantize_type: 'moving_average_abs_max' activation_quantize_type: 'moving_average_abs_max'

View File

@@ -14,7 +14,7 @@ Distillation:
alpha: 1.0 alpha: 1.0
loss: soft_label loss: soft_label
Quantization: QuantAware:
onnx_format: true onnx_format: true
use_pact: true use_pact: true
activation_quantize_type: 'moving_average_abs_max' activation_quantize_type: 'moving_average_abs_max'

View File

@@ -14,12 +14,13 @@ Distillation:
alpha: 1.0 alpha: 1.0
loss: soft_label loss: soft_label
Quantization: QuantAware:
onnx_format: true onnx_format: true
activation_quantize_type: 'moving_average_abs_max' activation_quantize_type: 'moving_average_abs_max'
quantize_op_types: quantize_op_types:
- conv2d - conv2d
- depthwise_conv2d - depthwise_conv2d
- conv2d_transpose
PTQ: PTQ:

View File

@@ -14,7 +14,7 @@ Distillation:
alpha: 1.0 alpha: 1.0
loss: soft_label loss: soft_label
Quantization: QuantAware:
onnx_format: true onnx_format: true
activation_quantize_type: 'moving_average_abs_max' activation_quantize_type: 'moving_average_abs_max'
quantize_op_types: quantize_op_types:

View File

@@ -17,7 +17,7 @@ Distillation:
node: node:
- conv2d_94.tmp_0 - conv2d_94.tmp_0
Quantization: QuantAware:
onnx_format: True onnx_format: True
quantize_op_types: quantize_op_types:
- conv2d - conv2d