[v1 loader]qwen Offline fp8 (#4036)

* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
This commit is contained in:
bukejiyu
2025-09-15 13:44:11 +08:00
committed by GitHub
parent b1a5b756a3
commit 29ed617f0f
21 changed files with 440 additions and 138 deletions

View File

@@ -65,7 +65,7 @@ class WeightOnlyConfig(QuantConfigBase):
@classmethod
def from_config(cls, config: dict) -> "WeightOnlyConfig":
algo = config["algo"]
is_checkpoint_bf16 = config.get("is_checkpoint_bf16", False)
is_checkpoint_bf16 = not config.get("is_quantized", False)
return cls(algo, is_checkpoint_bf16)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
@@ -162,7 +162,7 @@ class WINT8Config(WeightOnlyConfig):
@classmethod
def from_config(cls, config: dict) -> "WINT8Config":
is_checkpoint_bf16 = config.get("is_checkpoint_bf16", False)
is_checkpoint_bf16 = not config.get("is_quantized", False)
return cls(is_checkpoint_bf16)
def name(self) -> str:
@@ -182,7 +182,7 @@ class WINT4Config(WeightOnlyConfig):
@classmethod
def from_config(cls, config: dict) -> "WINT4Config":
is_checkpoint_bf16 = config.get("is_checkpoint_bf16", False)
is_checkpoint_bf16 = not config.get("is_quantized", False)
return cls(is_checkpoint_bf16)
def name(self) -> str:
@@ -202,13 +202,15 @@ class WeightOnlyLinearMethod(QuantMethodBase):
self.quant_config = quant_config
def create_weights(self, layer, **extra_weight_attrs):
if self.quant_config.is_checkpoint_bf16:
# TODO(bukejiyu): remove v1 loader check when v0 loader is removed
if self.quant_config.is_checkpoint_bf16 and layer.fd_config.load_config.load_choices == "default_v1":
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
extra_weight_attrs["weight_need_transpose"] = extra_weight_attrs.get("model_format") == "torch"
quant_attrs = extra_weight_attrs
if (
isinstance(layer, MergedColumnParallelLinear)
@@ -256,6 +258,7 @@ class WeightOnlyLinearMethod(QuantMethodBase):
{
"weight_loader": weight_loader,
"output_dim": output_dim,
"weight_need_transpose": not extra_weight_attrs.get("model_format") == "torch",
},
)