mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
[Serving] PaddleSeg add triton serving && simple serving example (#1171)
* Update keypointdetection result docs * Update im.copy() to im in examples * Update new Api, fastdeploy::vision::Visualize to fastdeploy::vision * Update SwapBackgroundSegmentation && SwapBackgroundMatting to SwapBackground * Update README_CN.md * Update README_CN.md * Update preprocessor.h * PaddleSeg supports triton serving * Add PaddleSeg simple serving example * Add PaddleSeg triton serving client code * Update triton serving runtime config.pbtxt * Update paddleseg grpc client * Add paddle serving README
This commit is contained in:
@@ -0,0 +1,36 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
|
||||
# PaddleSegmentation Python Simple Serving Demo
|
||||
|
||||
|
||||
## Environment
|
||||
|
||||
- 1. Prepare environment and install FastDeploy Python whl, refer to [download_prebuilt_libraries](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Server:
|
||||
```bash
|
||||
# Download demo code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/python/serving
|
||||
|
||||
# Download PP_LiteSeg model
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
|
||||
# Launch server, change the configurations in server.py to select hardware, backend, etc.
|
||||
# and use --host, --port to specify IP and port
|
||||
fastdeploy simple_serving --app server:app
|
||||
```
|
||||
|
||||
Client:
|
||||
```bash
|
||||
# Download demo code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/python/serving
|
||||
|
||||
# Download test image
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
# Send request and get inference result (Please adapt the IP and port if necessary)
|
||||
python client.py
|
||||
```
|
@@ -0,0 +1,36 @@
|
||||
简体中文 | [English](README.md)
|
||||
|
||||
# PaddleSegmentation Python轻量服务化部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
服务端:
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/python/serving
|
||||
|
||||
# 下载PP_LiteSeg模型文件
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
|
||||
# 启动服务,可修改server.py中的配置项来指定硬件、后端等
|
||||
# 可通过--host、--port指定IP和端口号
|
||||
fastdeploy simple_serving --app server:app
|
||||
```
|
||||
|
||||
客户端:
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/detection/paddledetection/python/serving
|
||||
|
||||
# 下载测试图片
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 请求服务,获取推理结果(如有必要,请修改脚本中的IP和端口号)
|
||||
python client.py
|
||||
```
|
@@ -0,0 +1,23 @@
|
||||
import requests
|
||||
import json
|
||||
import cv2
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.serving.utils import cv2_to_base64
|
||||
|
||||
if __name__ == '__main__':
|
||||
url = "http://127.0.0.1:8000/fd/ppliteseg"
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
im = cv2.imread("cityscapes_demo.png")
|
||||
data = {"data": {"image": cv2_to_base64(im)}, "parameters": {}}
|
||||
|
||||
resp = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||
if resp.status_code == 200:
|
||||
r_json = json.loads(resp.json()["result"])
|
||||
result = fd.vision.utils.json_to_segmentation(r_json)
|
||||
vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
||||
else:
|
||||
print("Error code:", resp.status_code)
|
||||
print(resp.text)
|
@@ -0,0 +1,38 @@
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.serving.server import SimpleServer
|
||||
import os
|
||||
import logging
|
||||
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
# Configurations
|
||||
model_dir = 'PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer'
|
||||
device = 'cpu'
|
||||
use_trt = False
|
||||
|
||||
# Prepare model
|
||||
model_file = os.path.join(model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(model_dir, "deploy.yaml")
|
||||
|
||||
# Setup runtime option to select hardware, backend, etc.
|
||||
option = fd.RuntimeOption()
|
||||
if device.lower() == 'gpu':
|
||||
option.use_gpu()
|
||||
if use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_cache_file('pp_lite_seg.trt')
|
||||
|
||||
# Create model instance
|
||||
model_instance = fd.vision.segmentation.PaddleSegModel(
|
||||
model_file=model_file,
|
||||
params_file=params_file,
|
||||
config_file=config_file,
|
||||
runtime_option=option)
|
||||
|
||||
# Create server, setup REST API
|
||||
app = SimpleServer()
|
||||
app.register(
|
||||
task_name="fd/ppliteseg",
|
||||
model_handler=fd.serving.handler.VisionModelHandler,
|
||||
predictor=model_instance)
|
62
examples/vision/segmentation/paddleseg/serving/README.md
Normal file
62
examples/vision/segmentation/paddleseg/serving/README.md
Normal file
@@ -0,0 +1,62 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleSegmentation Serving Deployment Demo
|
||||
|
||||
## Launch Serving
|
||||
|
||||
```bash
|
||||
# Download demo code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/serving
|
||||
|
||||
#Download PP_LiteSeg model file
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
|
||||
# Move the model files to models/infer/1
|
||||
mv yolov5s.onnx models/infer/1/
|
||||
|
||||
# Pull fastdeploy image, x.y.z is FastDeploy version, example 1.0.2.
|
||||
docker pull paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
|
||||
|
||||
# Run the docker. The docker name is fd_serving, and the current directory is mounted as the docker's /serving directory
|
||||
nvidia-docker run -it --net=host --name fd_serving -v `pwd`/:/serving paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
|
||||
|
||||
# Start the service (Without setting the CUDA_VISIBLE_DEVICES environment variable, it will have scheduling privileges for all GPU cards)
|
||||
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models --backend-config=python,shm-default-byte-size=10485760
|
||||
```
|
||||
|
||||
Output the following contents if serving is launched
|
||||
|
||||
```
|
||||
......
|
||||
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
|
||||
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
|
||||
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
|
||||
```
|
||||
|
||||
## Client Requests
|
||||
|
||||
Execute the following command in the physical machine to send a grpc request and output the result
|
||||
|
||||
```
|
||||
#Download test images
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
#Installing client-side dependencies
|
||||
python3 -m pip install tritonclient\[all\]
|
||||
|
||||
# Send requests
|
||||
python3 paddleseg_grpc_client.py
|
||||
```
|
||||
|
||||
When the request is sent successfully, the results are returned in json format and printed out:
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
## Modify Configs
|
||||
|
||||
|
||||
|
||||
The default is to run ONNXRuntime on CPU. If developers need to run it on GPU or other inference engines, please see the [Configs File](../../../../../serving/docs/EN/model_configuration-en.md) to modify the configs in `models/runtime/config.pbtxt`.
|
68
examples/vision/segmentation/paddleseg/serving/README_CN.md
Normal file
68
examples/vision/segmentation/paddleseg/serving/README_CN.md
Normal file
@@ -0,0 +1,68 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleSegmentation 服务化部署示例
|
||||
|
||||
在服务化部署前,需确认
|
||||
|
||||
- 1. 服务化镜像的软硬件环境要求和镜像拉取命令请参考[FastDeploy服务化部署](../../../../../serving/README_CN.md)
|
||||
|
||||
|
||||
## 启动服务
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/serving
|
||||
|
||||
#下载yolov5模型文件
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz
|
||||
|
||||
# 将模型文件放入 models/runtime/1目录下
|
||||
mv PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer/model.pdmodel models/runtime/1/
|
||||
mv PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer/model.pdiparams models/runtime/1/
|
||||
|
||||
# 拉取fastdeploy镜像(x.y.z为镜像版本号,需参照serving文档替换为数字)
|
||||
# GPU镜像
|
||||
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
|
||||
# CPU镜像
|
||||
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-cpu-only-21.10
|
||||
|
||||
# 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录
|
||||
nvidia-docker run -it --net=host --name fd_serving -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
|
||||
|
||||
# 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量,会拥有所有GPU卡的调度权限)
|
||||
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models --backend-config=python,shm-default-byte-size=10485760
|
||||
```
|
||||
>> **注意**: 当出现"Address already in use", 请使用`--grpc-port`指定端口号来启动服务,同时更改paddleseg_grpc_client.py中的请求端口号
|
||||
|
||||
服务启动成功后, 会有以下输出:
|
||||
```
|
||||
......
|
||||
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
|
||||
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
|
||||
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
|
||||
```
|
||||
|
||||
|
||||
## 客户端请求
|
||||
|
||||
在物理机器中执行以下命令,发送grpc请求并输出结果
|
||||
```
|
||||
#下载测试图片
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
#安装客户端依赖
|
||||
python3 -m pip install tritonclient[all]
|
||||
|
||||
# 发送请求
|
||||
python3 paddleseg_grpc_client.py
|
||||
```
|
||||
|
||||
发送请求成功后,会返回json格式的检测结果并打印输出:
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
## 配置修改
|
||||
|
||||
当前默认配置在CPU上运行ONNXRuntime引擎, 如果要在GPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
|
@@ -0,0 +1,3 @@
|
||||
# PaddleSeg Pipeline
|
||||
|
||||
The pipeline directory does not have model files, but a version number directory needs to be maintained.
|
@@ -0,0 +1,67 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [-1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "SEG_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output_1"
|
||||
value: "RUNTIME_INPUT_1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output_2"
|
||||
value: "POSTPROCESS_INPUT_2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "x"
|
||||
value: "RUNTIME_INPUT_1"
|
||||
}
|
||||
output_map {
|
||||
key: "argmax_0.tmp_0"
|
||||
value: "RUNTIME_OUTPUT"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input_1"
|
||||
value: "RUNTIME_OUTPUT"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input_2"
|
||||
value: "POSTPROCESS_INPUT_2"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "SEG_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
115
examples/vision/segmentation/paddleseg/serving/models/postprocess/1/model.py
Executable file
115
examples/vision/segmentation/paddleseg/serving/models/postprocess/1/model.py
Executable file
@@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import time
|
||||
import os
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("postprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
self.output_dtype.append(dtype)
|
||||
print("postprocess output names:", self.output_names)
|
||||
|
||||
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
|
||||
self.postprocess_ = fd.vision.segmentation.PaddleSegPostprocessor(
|
||||
yaml_path)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
infer_outputs = pb_utils.get_input_tensor_by_name(
|
||||
request, self.input_names[0])
|
||||
im_info = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[1])
|
||||
infer_outputs = infer_outputs.as_numpy()
|
||||
im_info = im_info.as_numpy()
|
||||
for i in range(im_info.shape[0]):
|
||||
im_info[i] = json.loads(im_info[i].decode('utf-8').replace(
|
||||
"'", '"'))
|
||||
|
||||
results = self.postprocess_.run([infer_outputs], im_info[0])
|
||||
r_str = fd.vision.utils.fd_result_to_json(results)
|
||||
|
||||
r_np = np.array(r_str, dtype=np.object_)
|
||||
out_tensor = pb_utils.Tensor(self.output_names[0], r_np)
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[out_tensor, ])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
@@ -0,0 +1,30 @@
|
||||
name: "postprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "post_input_1"
|
||||
data_type: TYPE_INT32
|
||||
dims: [-1, -1, -1]
|
||||
},
|
||||
{
|
||||
name: "post_input_2"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "post_output"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
@@ -0,0 +1,12 @@
|
||||
Deploy:
|
||||
input_shape:
|
||||
- -1
|
||||
- 3
|
||||
- -1
|
||||
- -1
|
||||
model: model.pdmodel
|
||||
output_dtype: int32
|
||||
output_op: argmax
|
||||
params: model.pdiparams
|
||||
transforms:
|
||||
- type: Normalize
|
@@ -0,0 +1,117 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("preprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
# self.output_dtype.append(dtype)
|
||||
self.output_dtype.append(output_config["data_type"])
|
||||
print("preprocess output names:", self.output_names)
|
||||
|
||||
# init PaddleSegPreprocess class
|
||||
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
|
||||
self.preprocess_ = fd.vision.segmentation.PaddleSegPreprocessor(
|
||||
yaml_path)
|
||||
#if args['model_instance_kind'] == 'GPU':
|
||||
# device_id = int(args['model_instance_device_id'])
|
||||
# self.preprocess_.use_gpu(device_id)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
data = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[0])
|
||||
data = data.as_numpy()
|
||||
outputs, im_info = self.preprocess_.run(data)
|
||||
|
||||
# PaddleSeg preprocess has two outputs
|
||||
dlpack_tensor = outputs[0].to_dlpack()
|
||||
output_tensor_0 = pb_utils.Tensor.from_dlpack(self.output_names[0],
|
||||
dlpack_tensor)
|
||||
output_tensor_1 = pb_utils.Tensor(
|
||||
self.output_names[1], np.array(
|
||||
[im_info], dtype=np.object_))
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[output_tensor_0, output_tensor_1])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
@@ -0,0 +1,34 @@
|
||||
name: "preprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "preprocess_input"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [-1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "preprocess_output_1"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "preprocess_output_2"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use CPU, GPU inference option is:KIND_GPU
|
||||
kind: KIND_CPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
# gpus: [0]
|
||||
}
|
||||
]
|
@@ -0,0 +1,5 @@
|
||||
# Runtime Directory
|
||||
|
||||
This directory holds the model files.
|
||||
Paddle models must be model.pdmodel and model.pdiparams files.
|
||||
ONNX models must be model.onnx files.
|
@@ -0,0 +1,60 @@
|
||||
# optional, If name is specified it must match the name of the model repository directory containing the model.
|
||||
name: "runtime"
|
||||
backend: "fastdeploy"
|
||||
max_batch_size: 1
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "x"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape
|
||||
dims: [3, -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "argmax_0.tmp_0"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use TRT engine
|
||||
name: "tensorrt",
|
||||
# use fp32 on TRT engine
|
||||
parameters { key: "precision" value: "trt_fp32" }
|
||||
},
|
||||
{
|
||||
name: "min_shape"
|
||||
parameters { key: "x" value: "1 3 256 256" }
|
||||
},
|
||||
{
|
||||
name: "opt_shape"
|
||||
parameters { key: "x" value: "1 3 1024 1024" }
|
||||
},
|
||||
{
|
||||
name: "max_shape"
|
||||
parameters { key: "x" value: "1 3 2048 2048" }
|
||||
}
|
||||
]
|
||||
}}
|
@@ -0,0 +1,112 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import time
|
||||
from typing import Optional
|
||||
import cv2
|
||||
import json
|
||||
|
||||
from tritonclient import utils as client_utils
|
||||
from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2
|
||||
|
||||
LOGGER = logging.getLogger("run_inference_on_triton")
|
||||
|
||||
|
||||
class SyncGRPCTritonRunner:
|
||||
DEFAULT_MAX_RESP_WAIT_S = 120
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
server_url: str,
|
||||
model_name: str,
|
||||
model_version: str,
|
||||
*,
|
||||
verbose=False,
|
||||
resp_wait_s: Optional[float]=None, ):
|
||||
self._server_url = server_url
|
||||
self._model_name = model_name
|
||||
self._model_version = model_version
|
||||
self._verbose = verbose
|
||||
self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s
|
||||
|
||||
self._client = InferenceServerClient(
|
||||
self._server_url, verbose=self._verbose)
|
||||
error = self._verify_triton_state(self._client)
|
||||
if error:
|
||||
raise RuntimeError(
|
||||
f"Could not communicate to Triton Server: {error}")
|
||||
|
||||
LOGGER.debug(
|
||||
f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} "
|
||||
f"are up and ready!")
|
||||
|
||||
model_config = self._client.get_model_config(self._model_name,
|
||||
self._model_version)
|
||||
model_metadata = self._client.get_model_metadata(self._model_name,
|
||||
self._model_version)
|
||||
LOGGER.info(f"Model config {model_config}")
|
||||
LOGGER.info(f"Model metadata {model_metadata}")
|
||||
|
||||
for tm in model_metadata.inputs:
|
||||
print("tm:", tm)
|
||||
self._inputs = {tm.name: tm for tm in model_metadata.inputs}
|
||||
self._input_names = list(self._inputs)
|
||||
self._outputs = {tm.name: tm for tm in model_metadata.outputs}
|
||||
self._output_names = list(self._outputs)
|
||||
self._outputs_req = [
|
||||
InferRequestedOutput(name) for name in self._outputs
|
||||
]
|
||||
|
||||
def Run(self, inputs):
|
||||
"""
|
||||
Args:
|
||||
inputs: list, Each value corresponds to an input name of self._input_names
|
||||
Returns:
|
||||
results: dict, {name : numpy.array}
|
||||
"""
|
||||
infer_inputs = []
|
||||
for idx, data in enumerate(inputs):
|
||||
infer_input = InferInput(self._input_names[idx], data.shape,
|
||||
"UINT8")
|
||||
infer_input.set_data_from_numpy(data)
|
||||
infer_inputs.append(infer_input)
|
||||
|
||||
results = self._client.infer(
|
||||
model_name=self._model_name,
|
||||
model_version=self._model_version,
|
||||
inputs=infer_inputs,
|
||||
outputs=self._outputs_req,
|
||||
client_timeout=self._response_wait_t, )
|
||||
results = {name: results.as_numpy(name) for name in self._output_names}
|
||||
return results
|
||||
|
||||
def _verify_triton_state(self, triton_client):
|
||||
if not triton_client.is_server_live():
|
||||
return f"Triton server {self._server_url} is not live"
|
||||
elif not triton_client.is_server_ready():
|
||||
return f"Triton server {self._server_url} is not ready"
|
||||
elif not triton_client.is_model_ready(self._model_name,
|
||||
self._model_version):
|
||||
return f"Model {self._model_name}:{self._model_version} is not ready"
|
||||
return None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = "paddleseg"
|
||||
model_version = "1"
|
||||
url = "localhost:8001"
|
||||
runner = SyncGRPCTritonRunner(url, model_name, model_version)
|
||||
im = cv2.imread("cityscapes_demo.png")
|
||||
im = np.array([im, ])
|
||||
# batch input
|
||||
# im = np.array([im, im, im])
|
||||
for i in range(1):
|
||||
result = runner.Run([im, ])
|
||||
for name, values in result.items():
|
||||
print("output_name:", name)
|
||||
# values is batch
|
||||
for value in values:
|
||||
value = json.loads(value)
|
||||
print(
|
||||
"Only print the first 20 labels in label_map of SEG_RESULT")
|
||||
value["label_map"] = value["label_map"][:20]
|
||||
print(value)
|
@@ -31,7 +31,8 @@ class FASTDEPLOY_DECL PaddleSegPreprocessor {
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] outputs The output tensors which will feed in runtime, include image
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \param[in] imgs_info The original input images shape info map, key is "shape_info", value is vector<array<int, 2>> a{{height, width}}
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
*/
|
||||
virtual bool Run(
|
||||
|
Reference in New Issue
Block a user