diff --git a/README.md b/README.md
index f18766817..e8f014f6f 120000
--- a/README.md
+++ b/README.md
@@ -1 +1 @@
-README_EN.md
\ No newline at end of file
+README_CN.md
diff --git a/README_CN.md b/README_CN.md
index b8eed0458..0b74d1f02 100644
--- a/README_CN.md
+++ b/README_CN.md
@@ -1,4 +1,4 @@
-[English](README.md) | 简体中文
+[English](README_EN.md) | 简体中文

@@ -18,13 +18,13 @@
**⚡️FastDeploy**是一款**易用高效**的推理部署开发套件。覆盖业界🔥**热门CV、NLP、Speech的AI模型**并提供📦**开箱即用**的部署体验,包括图像分类、目标检测、图像分割、人脸检测、人脸识别、人体关键点识别、文字识别、语义理解等多任务,满足开发者**多场景**,**多硬件**、**多平台**的产业部署需求。
-| [Object Detection](examples/vision) | [3D Object Detection](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [Semantic Segmentation](examples/vision/segmentation/paddleseg) | [Potrait Segmentation](examples/vision/segmentation/paddleseg) |
+| [Object Detection](examples/vision/detection) | [3D Object Detection](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [Semantic Segmentation](examples/vision/segmentation/paddleseg) | [Potrait Segmentation](examples/vision/segmentation/paddleseg) |
|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
|
|
|
-| [**Image Matting**](examples/vision/matting) | [**Real-Time Matting**](examples/vision/matting) | [**OCR**](examples/vision/ocr) |[**Face Alignment**](examples/vision/ocr)
+| [**Image Matting**](examples/vision/matting) | [**Real-Time Matting**](examples/vision/matting) | [**OCR**](examples/vision/ocr) |[**Face Alignment**](examples/vision/facealign)
|
|
|
|
|
| [**Pose Estimation**](examples/vision/keypointdetection) | [**Behavior Recognition**](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [**NLP**](examples/text) |[**Speech**](examples/audio/pp-tts)
-|
|
|
|
**input** :早上好,今天是2020
/10/29,最低温度是-3°C。
**output**: [
](https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/parakeet_espnet_fs2_pwg_demo/tn_g2p/parakeet/001.wav)
|
+|
|
|
| **input** :早上好今天是2020
/10/29,最低温度是-3°C。
**output**: [
](https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/parakeet_espnet_fs2_pwg_demo/tn_g2p/parakeet/001.wav)
|
## 近期更新
@@ -40,7 +40,7 @@
- **🖥️ 服务端部署:支持推理速度更快的后端,支持更多的模型**
- 集成 Paddle Inference TensorRT后端,并保证其使用与Paddle Inference、TensorRT、OpenVINO、ONNX Runtime、Paddle Lite等一致的开发体验;
- 支持并测试 Graphcore IPU 通过 Paddle Inference后端;
- - 优化[一键模型量化工具](tools/quantization),支持YOLOv7、YOLOv6、YOLOv5等视觉模型,在CPU和GPU推理速度可提升1.5~2倍;
+ - 优化[一键模型自动化压缩工具](./tools/auto_compression),支持YOLOv7、YOLOv6、YOLOv5等视觉模型,在CPU和GPU推理速度可提升1.5~2倍;
- 新增 [PP-Tracking](./examples/vision/tracking/pptracking) 和 [RobustVideoMatting](./examples/vision/matting) 等模型;
- 🔥 **2022.10.24:Release FastDeploy [release v0.4.0](https://github.com/PaddlePaddle/FastDeploy/tree/release/0.4.0)**
diff --git a/README_EN.md b/README_EN.md
index d30fd587a..5fdfe0c55 100644
--- a/README_EN.md
+++ b/README_EN.md
@@ -20,13 +20,13 @@ English | [简体中文](README_CN.md)
**⚡️FastDeploy** is an **accessible and efficient** deployment Development Toolkit. It covers 🔥**critical CV、NLP、Speech AI models** in the industry and provides 📦**out-of-the-box** deployment experience. It covers image classification, object detection, image segmentation, face detection, face recognition, human keypoint detection, OCR, semantic understanding and other tasks to meet developers' industrial deployment needs for **multi-scenario**, **multi-hardware** and **multi-platform** .
-| [Object Detection](examples/vision) | [3D Object Detection](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [Semantic Segmentation](examples/vision/segmentation/paddleseg) | [Potrait Segmentation](examples/vision/segmentation/paddleseg) |
+| [Object Detection](examples/vision/detection) | [3D Object Detection](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [Semantic Segmentation](examples/vision/segmentation/paddleseg) | [Potrait Segmentation](examples/vision/segmentation/paddleseg) |
|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
|
|
|
-| [**Image Matting**](examples/vision/matting) | [**Real-Time Matting**](examples/vision/matting) | [**OCR**](examples/vision/ocr) |[**Face Alignment**](examples/vision/ocr)
+| [**Image Matting**](examples/vision/matting) | [**Real-Time Matting**](examples/vision/matting) | [**OCR**](examples/vision/ocr) |[**Face Alignment**](examples/vision/facealign)
|
|
|
|
|
| [**Pose Estimation**](examples/vision/keypointdetection) | [**Behavior Recognition**](https://github.com/PaddlePaddle/FastDeploy/issues/6) | [**NLP**](examples/text) |[**Speech**](examples/audio/pp-tts)
-|
|
|
| **input** :Life was like a box of chocolates, you never know what you're gonna get.
**output**: [
](https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/tacotron2_ljspeech_waveflow_samples_0.2/sentence_1.wav)
|
+|
|
|
| **input** :早上好今天是2020
/10/29,最低温度是-3°C。
**output**: [
](https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/parakeet_espnet_fs2_pwg_demo/tn_g2p/parakeet/001.wav)
|
## 📣 Recent Updates
diff --git a/docs/api_docs/python/README.md b/docs/api_docs/python/README.md
index c6bccc576..789ae76bb 100644
--- a/docs/api_docs/python/README.md
+++ b/docs/api_docs/python/README.md
@@ -2,7 +2,7 @@
This directory help to generate Python API documents for FastDeploy.
-1. First, to generate the latest api documents, you need to install the latest FastDeploy, refer [build and install](en/build_and_install) to build FastDeploy python wheel package with the latest code.
+1. First, to generate the latest api documents, you need to install the latest FastDeploy, refer [build and install](../../cn/build_and_install) to build FastDeploy python wheel package with the latest code.
2. After installed FastDeploy in your python environment, there are some dependencies need to install, execute command `pip install -r requirements.txt` in this directory
3. Execute command `make html` to generate API documents
diff --git a/docs/cn/build_and_install/android.md b/docs/cn/build_and_install/android.md
index 899ec2985..fb945ed3a 100644
--- a/docs/cn/build_and_install/android.md
+++ b/docs/cn/build_and_install/android.md
@@ -102,4 +102,4 @@ make install
如何使用FastDeploy Android C++ SDK 请参考使用案例文档:
- [图像分类Android使用文档](../../../examples/vision/classification/paddleclas/android/README.md)
- [目标检测Android使用文档](../../../examples/vision/detection/paddledetection/android/README.md)
-- [在 Android 通过 JNI 中使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_cpp_sdk_on_android.md)
+- [在 Android 通过 JNI 中使用 FastDeploy C++ SDK](../../cn/faq/use_cpp_sdk_on_android.md)
diff --git a/docs/cn/faq/use_sdk_on_windows.md b/docs/cn/faq/use_sdk_on_windows.md
index be1e1ab0a..7209d50bb 100644
--- a/docs/cn/faq/use_sdk_on_windows.md
+++ b/docs/cn/faq/use_sdk_on_windows.md
@@ -218,7 +218,7 @@ D:\qiuyanjun\fastdeploy_test\infer_ppyoloe\x64\Release\infer_ppyoloe.exe

(2)其中infer_ppyoloe.cpp的代码可以直接从examples中的代码拷贝过来:
-- [examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc](../../examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc)
+- [examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc](../../../examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc)
(3)CMakeLists.txt主要包括配置FastDeploy C++ SDK的路径,如果是GPU版本的SDK,还需要配置CUDA_DIRECTORY为CUDA的安装路径,CMakeLists.txt的配置如下:
diff --git a/docs/en/faq/use_sdk_on_windows.md b/docs/en/faq/use_sdk_on_windows.md
index f75c6d911..367f6e1df 100644
--- a/docs/en/faq/use_sdk_on_windows.md
+++ b/docs/en/faq/use_sdk_on_windows.md
@@ -179,7 +179,7 @@ D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\third_libs\inst

-Compile successfully, you can see the exe saved in:
+Compile successfully, you can see the exe saved in:
```bat
D:\qiuyanjun\fastdeploy_test\infer_ppyoloe\x64\Release\infer_ppyoloe.exe
@@ -221,7 +221,7 @@ This section is for CMake users and describes how to create CMake projects in Vi

(2)The code of infer_ppyoloe.cpp can be copied directly from the code in examples:
-- [examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc](../../examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc)
+- [examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc](../../../examples/vision/detection/paddledetection/cpp/infer_ppyoloe.cc)
(3)CMakeLists.txt mainly includes the configuration of the path of FastDeploy C++ SDK, if it is the GPU version of the SDK, you also need to configure CUDA_DIRECTORY as the installation path of CUDA, the configuration of CMakeLists.txt is as follows:
@@ -361,7 +361,7 @@ A brief description of the usage is as follows.
#### 4.1.2 fastdeploy_init.bat View all dll, lib and include paths in the SDK
-Go to the root directory of the SDK and run the show command to view all the dll, lib and include paths in the SDK. In the following command, %cd% means the current directory (the root directory of the SDK).
+Go to the root directory of the SDK and run the show command to view all the dll, lib and include paths in the SDK. In the following command, %cd% means the current directory (the root directory of the SDK).
```bat
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat show %cd%
@@ -504,7 +504,7 @@ copy /Y %FASTDEPLOY_HOME%\third_libs\install\yaml-cpp\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.xml Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\3rdparty\tbb\bin\*.dll Release\
-```
+```
Note that if you compile the latest SDK or version >0.2.1 by yourself, the opencv and openvino directory structure has changed and the path needs to be modified appropriately. For example:
```bat
copy /Y %FASTDEPLOY_HOME%\third_libs\install\opencv\build\x64\vc15\bin\*.dll Release\
diff --git a/docs/en/quantize.md b/docs/en/quantize.md
index effce0700..c4535808e 100644
--- a/docs/en/quantize.md
+++ b/docs/en/quantize.md
@@ -27,7 +27,7 @@ FastDeploy基于PaddleSlim, 集成了一键模型量化的工具, 同时, FastDe
### 用户使用FastDeploy一键模型量化工具来量化模型
Fastdeploy基于PaddleSlim, 为用户提供了一键模型量化的工具,请参考如下文档进行模型量化.
-- [FastDeploy 一键模型量化](../../tools/quantization/)
+- [FastDeploy 一键模型量化](../../tools/auto_compression/)
当用户获得产出的量化模型之后,即可以使用FastDeploy来部署量化模型.
diff --git a/examples/runtime/README.md b/examples/runtime/README.md
index 849d6ecef..18651bd69 100644
--- a/examples/runtime/README.md
+++ b/examples/runtime/README.md
@@ -1,16 +1,16 @@
-# FastDeploy Runtime推理示例
+# FastDeploy Runtime examples
-| 示例代码 | 编程语言 | 说明 |
+| Example Code | Program Language | Description |
| :------- | :------- | :---- |
-| python/infer_paddle_paddle_inference.py | Python | paddle模型通过paddle inference在cpu/gpu上的推理 |
-| python/infer_paddle_tensorrt.py | Python | paddle模型通过tensorrt在gpu上的推理 |
-| python/infer_paddle_openvino.py | Python | paddle模型通过openvino在cpu上的推理 |
-| python/infer_paddle_onnxruntime.py | Python | paddle模型通过onnx runtime在cpu/gpu上的推理 |
-| python/infer_onnx_openvino.py | Python | onnx模型通过openvino在cpu上的推理 |
-| python/infer_onnx_tensorrt.py | Python | onnx模型通过tensorrt在gpu上的推理 |
-| cpp/infer_paddle_paddle_inference.cc | C++ | paddle模型通过paddle inference在cpu/gpu上的推理 |
-| cpp/infer_paddle_tensorrt.cc | C++ | paddle模型通过tensorrt在gpu上的推理 |
-| cpp/infer_paddle_openvino.cc | C++ | paddle模型通过openvino在cpu上的推理 |
-| cpp/infer_paddle_onnxruntime.cc | C++ | paddle模型通过onnx runtime在cpu/gpu上的推理 |
-| cpp/infer_onnx_openvino.cc | C++ | onnx模型通过openvino在cpu上的推理 |
-| cpp/infer_onnx_tensorrt.cc | C++ | onnx模型通过tensorrt在gpu上的推理 |
+| python/infer_paddle_paddle_inference.py | Python | Deploy Paddle model with Paddle Inference(CPU/GPU) |
+| python/infer_paddle_tensorrt.py | Python | Deploy Paddle model with TensorRT(GPU) |
+| python/infer_paddle_openvino.py | Python | Deploy Paddle model with OpenVINO(CPU) |
+| python/infer_paddle_onnxruntime.py | Python | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
+| python/infer_onnx_openvino.py | Python | Deploy ONNX model with OpenVINO(CPU) |
+| python/infer_onnx_tensorrt.py | Python | Deploy ONNX model with TensorRT(GPU) |
+| cpp/infer_paddle_paddle_inference.cc | C++ | Deploy Paddle model with Paddle Inference(CPU/GPU) |
+| cpp/infer_paddle_tensorrt.cc | C++ | Deploy Paddle model with TensorRT(GPU) |
+| cpp/infer_paddle_openvino.cc | C++ | Deploy Paddle model with OpenVINO(CPU |
+| cpp/infer_paddle_onnxruntime.cc | C++ | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
+| cpp/infer_onnx_openvino.cc | C++ | Deploy ONNX model with OpenVINO(CPU) |
+| cpp/infer_onnx_tensorrt.cc | C++ | Deploy ONNX model with TensorRT(GPU) |
diff --git a/examples/text/ernie-3.0/serving/README.md b/examples/text/ernie-3.0/serving/README.md
index df969724a..487a5eddc 100644
--- a/examples/text/ernie-3.0/serving/README.md
+++ b/examples/text/ernie-3.0/serving/README.md
@@ -168,4 +168,4 @@ entity: 华夏 label: LOC pos: [14, 15]
## 配置修改
-当前分类任务(ernie_seqcls_model/config.pbtxt)默认配置在CPU上运行OpenVINO引擎; 序列标注任务默认配置在GPU上运行Paddle引擎。如果要在CPU/GPU或其他推理引擎上运行, 需要修改配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
+当前分类任务(ernie_seqcls_model/config.pbtxt)默认配置在CPU上运行OpenVINO引擎; 序列标注任务默认配置在GPU上运行Paddle引擎。如果要在CPU/GPU或其他推理引擎上运行, 需要修改配置,详情请参考[配置文档](../../../../serving/docs/zh_CN/model_configuration.md)
diff --git a/examples/vision/README.md b/examples/vision/README.md
index f439d6e72..347da1be7 100755
--- a/examples/vision/README.md
+++ b/examples/vision/README.md
@@ -30,4 +30,4 @@ FastDeploy针对飞桨的视觉套件,以及外部热门模型,提供端到
- 加载模型
- 调用`predict`接口
-FastDeploy在各视觉模型部署时,也支持一键切换后端推理引擎,详情参阅[如何切换模型推理引擎](../../docs/runtime/how_to_change_backend.md)。
+FastDeploy在各视觉模型部署时,也支持一键切换后端推理引擎,详情参阅[如何切换模型推理引擎](../../docs/cn/faq/how_to_change_backend.md)。
diff --git a/examples/vision/classification/paddleclas/quantize/cpp/README.md b/examples/vision/classification/paddleclas/quantize/cpp/README.md
index e2e625dbd..76ffa0be9 100644
--- a/examples/vision/classification/paddleclas/quantize/cpp/README.md
+++ b/examples/vision/classification/paddleclas/quantize/cpp/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的ResNet50_Vd模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/classification/paddleclas/quantize/python/README.md b/examples/vision/classification/paddleclas/quantize/python/README.md
index 00fd7bef9..6b874e77a 100644
--- a/examples/vision/classification/paddleclas/quantize/python/README.md
+++ b/examples/vision/classification/paddleclas/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的ResNet50_Vd模型为例, 进行部署
diff --git a/examples/vision/classification/paddleclas/web/README.md b/examples/vision/classification/paddleclas/web/README.md
index 837773cc3..710dd53ad 100644
--- a/examples/vision/classification/paddleclas/web/README.md
+++ b/examples/vision/classification/paddleclas/web/README.md
@@ -6,7 +6,7 @@
## 前端部署图像分类模型
-图像分类模型web demo使用[**参考文档**](../../../../examples/application/js/web_demo)
+图像分类模型web demo使用[**参考文档**](../../../../application/js/web_demo/)
## MobileNet js接口
@@ -34,4 +34,3 @@ console.log(res);
- [PaddleClas模型 python部署](../../paddleclas/python/)
- [PaddleClas模型 C++部署](../cpp/)
-
diff --git a/examples/vision/classification/resnet/cpp/README.md b/examples/vision/classification/resnet/cpp/README.md
index eb3bff6f4..1180d26c9 100644
--- a/examples/vision/classification/resnet/cpp/README.md
+++ b/examples/vision/classification/resnet/cpp/README.md
@@ -4,8 +4,8 @@
在部署前,需确认以下两个步骤
-- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
-- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/quick_start)
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试
@@ -33,7 +33,7 @@ wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/Ima
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
-- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
+- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## ResNet C++接口
@@ -74,4 +74,4 @@ fastdeploy::vision::classification::ResNet(
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
-- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/classification/resnet/python/README.md b/examples/vision/classification/resnet/python/README.md
index 6315ee06a..a115bcdf4 100644
--- a/examples/vision/classification/resnet/python/README.md
+++ b/examples/vision/classification/resnet/python/README.md
@@ -2,8 +2,8 @@
在部署前,需确认以下两个步骤
-- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
-- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
+- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
@@ -69,4 +69,4 @@ fd.vision.classification.ResNet(model_file, params_file, runtime_option=None, mo
- [ResNet 模型介绍](..)
- [ResNet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
-- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/paddledetection/quantize/cpp/README.md b/examples/vision/detection/paddledetection/quantize/cpp/README.md
index 42bf40acb..bcc66e7f7 100644
--- a/examples/vision/detection/paddledetection/quantize/cpp/README.md
+++ b/examples/vision/detection/paddledetection/quantize/cpp/README.md
@@ -9,7 +9,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的PP-YOLOE-l模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/detection/paddledetection/quantize/python/README.md b/examples/vision/detection/paddledetection/quantize/python/README.md
index cecb5a140..3efcd232b 100644
--- a/examples/vision/detection/paddledetection/quantize/python/README.md
+++ b/examples/vision/detection/paddledetection/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的PP-YOLOE-l模型为例, 进行部署
diff --git a/examples/vision/detection/yolov5/quantize/cpp/README.md b/examples/vision/detection/yolov5/quantize/cpp/README.md
index 7d76bad51..5afaecce4 100644
--- a/examples/vision/detection/yolov5/quantize/cpp/README.md
+++ b/examples/vision/detection/yolov5/quantize/cpp/README.md
@@ -9,7 +9,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv5s模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/detection/yolov5/quantize/python/README.md b/examples/vision/detection/yolov5/quantize/python/README.md
index 9aa03a8cc..28086d8b5 100644
--- a/examples/vision/detection/yolov5/quantize/python/README.md
+++ b/examples/vision/detection/yolov5/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv5s模型为例, 进行部署
diff --git a/examples/vision/detection/yolov6/quantize/cpp/README.md b/examples/vision/detection/yolov6/quantize/cpp/README.md
index bf2208fab..53a05cab7 100644
--- a/examples/vision/detection/yolov6/quantize/cpp/README.md
+++ b/examples/vision/detection/yolov6/quantize/cpp/README.md
@@ -9,7 +9,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv6s模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/detection/yolov6/quantize/python/README.md b/examples/vision/detection/yolov6/quantize/python/README.md
index 5f70a02c8..889fe2f11 100644
--- a/examples/vision/detection/yolov6/quantize/python/README.md
+++ b/examples/vision/detection/yolov6/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv6s模型为例, 进行部署
```bash
diff --git a/examples/vision/detection/yolov7/python/README_EN.md b/examples/vision/detection/yolov7/python/README_EN.md
index 64ce3b6ed..57b341dd7 100644
--- a/examples/vision/detection/yolov7/python/README_EN.md
+++ b/examples/vision/detection/yolov7/python/README_EN.md
@@ -4,8 +4,8 @@ English | [简体中文](README.md)
Two steps before deployment:
-- 1. The hardware and software environment meets the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/docs_en/environment.md)
-- 2. Install FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../../docs/docs_en/quick_start)
+- 1. The hardware and software environment meets the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
+- 2. Install FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
This doc provides a quick `infer.py` demo of YOLOv7 deployment on CPU/GPU, and accelerated GPU deployment by TensorRT. Run the following command:
@@ -21,7 +21,7 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
# CPU Inference
python infer.py --model yolov7.onnx --image 000000014439.jpg --device cpu
-# GPU
+# GPU
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu --use_trt True
@@ -51,18 +51,18 @@ YOLOv7 model loading and initialisation, with model_file being the exported ONNX
> ```python
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
->
+>
> Model prediction interface with direct output of detection results from the image input.
->
+>
> **Parameters**
->
+>
> > * **image_data**(np.ndarray): Input image. Images need to be in HWC or BGR format
> > * **conf_threshold**(float): Filter threshold for detection box confidence
> > * **nms_iou_threshold**(float): iou thresholds during NMS processing
> **Return**
->
-> > Return to`fastdeploy.vision.DetectionResult`Struct. For more details, please refer to [Vision Model Results](../../../../../docs/docs_en/api/vision_results/)
+>
+> > Return to`fastdeploy.vision.DetectionResult`Struct. For more details, please refer to [Vision Model Results](../../../../../docs/api/vision_results/)
### Class Member Variables
@@ -80,5 +80,5 @@ Users can modify the following pre-processing parameters for their needs. This w
- [YOLOv7 Model Introduction](..)
- [YOLOv7 C++ Deployment](../cpp)
-- [Vision Model Results](../../../../../docs/docs_en/api/vision_results/)
-- [how to change inference backend](../../../../../docs/docs_en/runtime/how_to_change_inference_backend.md)
+- [Vision Model Results](../../../../../docs/api/vision_results/)
+- [how to change inference backend](../../../../../docs/en/faq/how_to_change_backend.md)
diff --git a/examples/vision/detection/yolov7/quantize/cpp/README.md b/examples/vision/detection/yolov7/quantize/cpp/README.md
index 53110591e..dc7874528 100644
--- a/examples/vision/detection/yolov7/quantize/cpp/README.md
+++ b/examples/vision/detection/yolov7/quantize/cpp/README.md
@@ -9,7 +9,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv7模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/detection/yolov7/quantize/python/README.md b/examples/vision/detection/yolov7/quantize/python/README.md
index ac1c44889..e82dc4615 100644
--- a/examples/vision/detection/yolov7/quantize/python/README.md
+++ b/examples/vision/detection/yolov7/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv7模型为例, 进行部署
```bash
diff --git a/examples/vision/keypointdetection/det_keypoint_unite/python/README.md b/examples/vision/keypointdetection/det_keypoint_unite/python/README.md
index e401b655a..1b2fc0f18 100644
--- a/examples/vision/keypointdetection/det_keypoint_unite/python/README.md
+++ b/examples/vision/keypointdetection/det_keypoint_unite/python/README.md
@@ -71,4 +71,4 @@ PPTinyPosePipeline模型加载和初始化,其中det_model是使用`fd.vision.
- [Pipeline 模型介绍](..)
- [Pipeline C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
-- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/keypointdetection/tiny_pose/python/README.md b/examples/vision/keypointdetection/tiny_pose/python/README.md
index 2d95e7a2f..f8835e00e 100644
--- a/examples/vision/keypointdetection/tiny_pose/python/README.md
+++ b/examples/vision/keypointdetection/tiny_pose/python/README.md
@@ -76,4 +76,4 @@ PP-TinyPose模型加载和初始化,其中model_file, params_file以及config_
- [PP-TinyPose 模型介绍](..)
- [PP-TinyPose C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
-- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
+- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
diff --git a/examples/vision/matting/ppmatting/cpp/README.md b/examples/vision/matting/ppmatting/cpp/README.md
index a2eaeee1a..04809ca69 100644
--- a/examples/vision/matting/ppmatting/cpp/README.md
+++ b/examples/vision/matting/ppmatting/cpp/README.md
@@ -7,7 +7,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
-以Linux上 PP-Matting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库)
+以Linux上 PP-Matting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库)
```bash
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
diff --git a/examples/vision/matting/rvm/cpp/README.md b/examples/vision/matting/rvm/cpp/README.md
index 1e4ade6eb..ff80ecaf7 100755
--- a/examples/vision/matting/rvm/cpp/README.md
+++ b/examples/vision/matting/rvm/cpp/README.md
@@ -5,7 +5,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
-以Linux上 RobustVideoMatting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库)
+以Linux上 RobustVideoMatting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库)
本目录下提供`infer.cc`快速完成RobustVideoMatting在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
diff --git a/examples/vision/ocr/PP-OCRv3/mini_program/README.md b/examples/vision/ocr/PP-OCRv3/mini_program/README.md
index 6bbe854b4..447a02e72 100644
--- a/examples/vision/ocr/PP-OCRv3/mini_program/README.md
+++ b/examples/vision/ocr/PP-OCRv3/mini_program/README.md
@@ -16,7 +16,7 @@ import * as ocr from "@paddle-js-models/ocr";
await ocr.init(detConfig, recConfig);
const res = await ocr.recognize(img, option, postConfig);
```
-ocr模型加载和初始化,其中模型为Paddle.js模型格式,js模型转换方式参考[文档](../../../../application/web_demo/README.md)
+ocr模型加载和初始化,其中模型为Paddle.js模型格式,js模型转换方式参考[文档](../../../../application/js/web_demo/README.md)
**init函数参数**
@@ -37,5 +37,4 @@ ocr模型加载和初始化,其中模型为Paddle.js模型格式,js模型转
- [PP-OCRv3 C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
-- [PP-OCRv3模型web demo文档](../../../../application/web_demo/README.md)
-
+- [PP-OCRv3模型web demo文档](../../../../application/js/web_demo/README.md)
diff --git a/examples/vision/ocr/PP-OCRv3/web/README.md b/examples/vision/ocr/PP-OCRv3/web/README.md
index 721778310..3afd24761 100644
--- a/examples/vision/ocr/PP-OCRv3/web/README.md
+++ b/examples/vision/ocr/PP-OCRv3/web/README.md
@@ -16,7 +16,7 @@ import * as ocr from "@paddle-js-models/ocr";
await ocr.init(detConfig, recConfig);
const res = await ocr.recognize(img, option, postConfig);
```
-ocr模型加载和初始化,其中模型为Paddle.js模型格式,js模型转换方式参考[文档](../../../../application/web_demo/README.md)
+ocr模型加载和初始化,其中模型为Paddle.js模型格式,js模型转换方式参考[文档](../../../../application/js/web_demo/README.md)
**init函数参数**
diff --git a/examples/vision/segmentation/paddleseg/quantize/cpp/README.md b/examples/vision/segmentation/paddleseg/quantize/cpp/README.md
index fa334fba4..9c1ec4b6a 100644
--- a/examples/vision/segmentation/paddleseg/quantize/cpp/README.md
+++ b/examples/vision/segmentation/paddleseg/quantize/cpp/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的PP_LiteSeg_T_STDC1_cityscapes模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
diff --git a/examples/vision/segmentation/paddleseg/quantize/python/README.md b/examples/vision/segmentation/paddleseg/quantize/python/README.md
index 9fd3b900b..2e06ae145 100644
--- a/examples/vision/segmentation/paddleseg/quantize/python/README.md
+++ b/examples/vision/segmentation/paddleseg/quantize/python/README.md
@@ -8,7 +8,7 @@
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
-- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
+- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
## 以量化后的PP_LiteSeg_T_STDC1_cityscapes模型为例, 进行部署
diff --git a/examples/vision/segmentation/paddleseg/rknpu2/python/README.md b/examples/vision/segmentation/paddleseg/rknpu2/python/README.md
index 74aeed2a0..64460c68e 100644
--- a/examples/vision/segmentation/paddleseg/rknpu2/python/README.md
+++ b/examples/vision/segmentation/paddleseg/rknpu2/python/README.md
@@ -4,7 +4,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md)
-【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)
+【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../../matting/)
本目录下提供`infer.py`快速完成PPHumanseg在RKNPU上部署的示例。执行如下脚本即可完成
diff --git a/examples/vision/segmentation/paddleseg/web/README.md b/examples/vision/segmentation/paddleseg/web/README.md
index 2402b18a7..6c214347c 100644
--- a/examples/vision/segmentation/paddleseg/web/README.md
+++ b/examples/vision/segmentation/paddleseg/web/README.md
@@ -7,7 +7,7 @@
## 前端部署PP-Humanseg v1模型
-PP-Humanseg v1模型web demo部署及使用参考[文档](../../../../application/web_demo/README.md)
+PP-Humanseg v1模型web demo部署及使用参考[文档](../../../../application/js/web_demo/README.md)
## PP-Humanseg v1 js接口
@@ -41,7 +41,3 @@ humanSeg.blurBackground(res)
**drawHumanSeg()函数参数**
> * **seg_values**(number[]): 输入参数,一般是getGrayValue函数计算的结果作为输入
-
-
-
-
diff --git a/examples/vision/tracking/pptracking/cpp/README.md b/examples/vision/tracking/pptracking/cpp/README.md
index 9adef9dc7..dd4642586 100644
--- a/examples/vision/tracking/pptracking/cpp/README.md
+++ b/examples/vision/tracking/pptracking/cpp/README.md
@@ -7,7 +7,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
-以Linux上 PP-Tracking 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库)
+以Linux上 PP-Tracking 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库)
```bash
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
diff --git a/fastdeploy/vision/common/processors/normalize.cc b/fastdeploy/vision/common/processors/normalize.cc
index 726ba67a7..e16379ba5 100644
--- a/fastdeploy/vision/common/processors/normalize.cc
+++ b/fastdeploy/vision/common/processors/normalize.cc
@@ -19,7 +19,7 @@ namespace vision {
Normalize::Normalize(const std::vector& mean,
const std::vector& std, bool is_scale,
const std::vector& min,
- const std::vector& max) {
+ const std::vector& max, bool swap_rb) {
FDASSERT(mean.size() == std.size(),
"Normalize: requires the size of mean equal to the size of std.");
std::vector mean_(mean.begin(), mean.end());
@@ -50,6 +50,7 @@ Normalize::Normalize(const std::vector& mean,
alpha_.push_back(alpha);
beta_.push_back(beta);
}
+ swap_rb_ = swap_rb;
}
bool Normalize::ImplByOpenCV(Mat* mat) {
@@ -57,6 +58,7 @@ bool Normalize::ImplByOpenCV(Mat* mat) {
std::vector split_im;
cv::split(*im, split_im);
+ if (swap_rb_) std::swap(split_im[0], split_im[2]);
for (int c = 0; c < im->channels(); c++) {
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
}
@@ -79,9 +81,13 @@ bool Normalize::ImplByFlyCV(Mat* mat) {
std[i] = 1.0 / alpha_[i];
mean[i] = -1 * beta_[i] * std[i];
}
+
+ std::vector channel_reorder_index = {0, 1, 2};
+ if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
+
fcv::Mat new_im(im->width(), im->height(),
fcv::FCVImageType::PKG_BGR_F32);
- fcv::normalize_to_submean_to_reorder(*im, mean, std, std::vector(),
+ fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
new_im, true);
mat->SetMat(new_im);
return true;
@@ -91,8 +97,8 @@ bool Normalize::ImplByFlyCV(Mat* mat) {
bool Normalize::Run(Mat* mat, const std::vector& mean,
const std::vector& std, bool is_scale,
const std::vector& min,
- const std::vector& max, ProcLib lib) {
- auto n = Normalize(mean, std, is_scale, min, max);
+ const std::vector& max, ProcLib lib, bool swap_rb) {
+ auto n = Normalize(mean, std, is_scale, min, max, swap_rb);
return n(mat, lib);
}
diff --git a/fastdeploy/vision/common/processors/normalize.h b/fastdeploy/vision/common/processors/normalize.h
index 515fcd7e6..c489207df 100644
--- a/fastdeploy/vision/common/processors/normalize.h
+++ b/fastdeploy/vision/common/processors/normalize.h
@@ -23,7 +23,8 @@ class FASTDEPLOY_DECL Normalize : public Processor {
Normalize(const std::vector& mean, const std::vector& std,
bool is_scale = true,
const std::vector& min = std::vector(),
- const std::vector& max = std::vector());
+ const std::vector& max = std::vector(),
+ bool swap_rb = false);
bool ImplByOpenCV(Mat* mat);
#ifdef ENABLE_FLYCV
bool ImplByFlyCV(Mat* mat);
@@ -44,14 +45,23 @@ class FASTDEPLOY_DECL Normalize : public Processor {
const std::vector& std, bool is_scale = true,
const std::vector& min = std::vector(),
const std::vector& max = std::vector(),
- ProcLib lib = ProcLib::DEFAULT);
+ ProcLib lib = ProcLib::DEFAULT, bool swap_rb = false);
std::vector GetAlpha() const { return alpha_; }
std::vector GetBeta() const { return beta_; }
+ bool GetSwapRB() {
+ return swap_rb_;
+ }
+
+ void SetSwapRB(bool swap_rb) {
+ swap_rb_ = swap_rb;
+ }
+
private:
std::vector alpha_;
std::vector beta_;
+ bool swap_rb_;
};
} // namespace vision
} // namespace fastdeploy
diff --git a/fastdeploy/vision/common/processors/normalize_and_permute.cc b/fastdeploy/vision/common/processors/normalize_and_permute.cc
index cb78cc720..ca1565ec8 100644
--- a/fastdeploy/vision/common/processors/normalize_and_permute.cc
+++ b/fastdeploy/vision/common/processors/normalize_and_permute.cc
@@ -21,7 +21,8 @@ NormalizeAndPermute::NormalizeAndPermute(const std::vector& mean,
const std::vector& std,
bool is_scale,
const std::vector& min,
- const std::vector& max) {
+ const std::vector& max,
+ bool swap_rb) {
FDASSERT(mean.size() == std.size(),
"Normalize: requires the size of mean equal to the size of std.");
std::vector mean_(mean.begin(), mean.end());
@@ -52,6 +53,7 @@ NormalizeAndPermute::NormalizeAndPermute(const std::vector& mean,
alpha_.push_back(alpha);
beta_.push_back(beta);
}
+ swap_rb_ = swap_rb;
}
bool NormalizeAndPermute::ImplByOpenCV(Mat* mat) {
@@ -60,6 +62,7 @@ bool NormalizeAndPermute::ImplByOpenCV(Mat* mat) {
int origin_h = im->rows;
std::vector split_im;
cv::split(*im, split_im);
+ if (swap_rb_) std::swap(split_im[0], split_im[2]);
for (int c = 0; c < im->channels(); c++) {
split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
}
@@ -94,8 +97,12 @@ bool NormalizeAndPermute::ImplByFlyCV(Mat* mat) {
std[i] = 1.0 / alpha_[i];
mean[i] = -1 * beta_[i] * std[i];
}
+
+ std::vector channel_reorder_index = {0, 1, 2};
+ if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
+
fcv::Mat new_im;
- fcv::normalize_to_submean_to_reorder(*im, mean, std, std::vector(),
+ fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
new_im, false);
mat->SetMat(new_im);
mat->layout = Layout::CHW;
@@ -106,8 +113,9 @@ bool NormalizeAndPermute::ImplByFlyCV(Mat* mat) {
bool NormalizeAndPermute::Run(Mat* mat, const std::vector& mean,
const std::vector& std, bool is_scale,
const std::vector& min,
- const std::vector& max, ProcLib lib) {
- auto n = NormalizeAndPermute(mean, std, is_scale, min, max);
+ const std::vector& max, ProcLib lib,
+ bool swap_rb) {
+ auto n = NormalizeAndPermute(mean, std, is_scale, min, max, swap_rb);
return n(mat, lib);
}
diff --git a/fastdeploy/vision/common/processors/normalize_and_permute.h b/fastdeploy/vision/common/processors/normalize_and_permute.h
index ec4766526..04715d9d7 100644
--- a/fastdeploy/vision/common/processors/normalize_and_permute.h
+++ b/fastdeploy/vision/common/processors/normalize_and_permute.h
@@ -23,7 +23,8 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
NormalizeAndPermute(const std::vector& mean,
const std::vector& std, bool is_scale = true,
const std::vector& min = std::vector(),
- const std::vector& max = std::vector());
+ const std::vector& max = std::vector(),
+ bool swap_rb = false);
bool ImplByOpenCV(Mat* mat);
#ifdef ENABLE_FLYCV
bool ImplByFlyCV(Mat* mat);
@@ -44,7 +45,7 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
const std::vector& std, bool is_scale = true,
const std::vector& min = std::vector(),
const std::vector& max = std::vector(),
- ProcLib lib = ProcLib::DEFAULT);
+ ProcLib lib = ProcLib::DEFAULT, bool swap_rb = false);
void SetAlpha(const std::vector& alpha) {
alpha_.clear();
@@ -58,9 +59,18 @@ class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
beta_.assign(beta.begin(), beta.end());
}
+ bool GetSwapRB() {
+ return swap_rb_;
+ }
+
+ void SetSwapRB(bool swap_rb) {
+ swap_rb_ = swap_rb;
+ }
+
private:
std::vector alpha_;
std::vector beta_;
+ bool swap_rb_;
};
} // namespace vision
} // namespace fastdeploy
diff --git a/fastdeploy/vision/common/processors/transform.cc b/fastdeploy/vision/common/processors/transform.cc
index 8d440b9c6..d54a4bca4 100644
--- a/fastdeploy/vision/common/processors/transform.cc
+++ b/fastdeploy/vision/common/processors/transform.cc
@@ -95,10 +95,77 @@ void FuseNormalizeHWC2CHW(
<< std::endl;
}
+void FuseNormalizeColorConvert(
+ std::vector>* processors) {
+ // Fuse Normalize and BGR2RGB/RGB2BGR
+ int normalize_index = -1;
+ int color_convert_index = -1;
+ // If these middle processors are after BGR2RGB/RGB2BGR and before Normalize,
+ // we can still fuse Normalize and BGR2RGB/RGB2BGR
+ static std::unordered_set middle_processors(
+ {"Resize", "ResizeByShort", "ResizeByLong", "Crop", "CenterCrop",
+ "LimitByStride", "LimitShort", "Pad", "PadToSize", "StridePad",
+ "WarpAffine"});
+
+ for (size_t i = 0; i < processors->size(); ++i) {
+ if ((*processors)[i]->Name() == "BGR2RGB" ||
+ (*processors)[i]->Name() == "RGB2BGR") {
+ color_convert_index = i;
+ for (size_t j = color_convert_index + 1; j < processors->size(); ++j) {
+ if ((*processors)[j]->Name() == "Normalize" ||
+ (*processors)[j]->Name() == "NormalizeAndPermute") {
+ normalize_index = j;
+ break;
+ }
+ }
+ if (normalize_index < 0) {
+ return;
+ }
+ for (size_t j = color_convert_index + 1; j < normalize_index; ++j) {
+ if (middle_processors.count((*processors)[j]->Name())) {
+ continue;
+ }
+ return;
+ }
+ }
+ }
+
+ if (color_convert_index < 0) {
+ return;
+ }
+
+ // Delete Color Space Convert
+ std::string color_processor_name = (*processors)[color_convert_index]->Name();
+ processors->erase(processors->begin() + color_convert_index);
+
+ // Toggle the swap_rb option of the Normalize processor
+ std::string normalize_processor_name =
+ (*processors)[normalize_index - 1]->Name();
+ bool swap_rb;
+ if (normalize_processor_name == "Normalize") {
+ auto processor = dynamic_cast(
+ (*processors)[normalize_index - 1].get());
+ swap_rb = processor->GetSwapRB();
+ processor->SetSwapRB(!swap_rb);
+ } else if (normalize_processor_name == "NormalizeAndPermute") {
+ auto processor = dynamic_cast(
+ (*processors)[normalize_index - 1].get());
+ swap_rb = processor->GetSwapRB();
+ processor->SetSwapRB(!swap_rb);
+ } else {
+ FDASSERT(false, "Something wrong in FuseNormalizeColorConvert().");
+ }
+
+ FDINFO << color_processor_name << " and " << normalize_processor_name
+ << " are fused to " << normalize_processor_name
+ << " with swap_rb=" << !swap_rb << std::endl;
+}
+
void FuseTransforms(
std::vector>* processors) {
FuseNormalizeCast(processors);
FuseNormalizeHWC2CHW(processors);
+ FuseNormalizeColorConvert(processors);
}
diff --git a/fastdeploy/vision/common/processors/transform.h b/fastdeploy/vision/common/processors/transform.h
index 53f7ffd63..2a914fff7 100644
--- a/fastdeploy/vision/common/processors/transform.h
+++ b/fastdeploy/vision/common/processors/transform.h
@@ -31,6 +31,7 @@
#include "fastdeploy/vision/common/processors/resize_by_short.h"
#include "fastdeploy/vision/common/processors/stride_pad.h"
#include "fastdeploy/vision/common/processors/warp_affine.h"
+#include
namespace fastdeploy {
namespace vision {
@@ -41,6 +42,9 @@ void FuseTransforms(std::vector>* processors);
void FuseNormalizeCast(std::vector>* processors);
// Fuse Normalize + HWC2CHW to NormalizeAndPermute
void FuseNormalizeHWC2CHW(std::vector>* processors);
+// Fuse Normalize + Color Convert
+void FuseNormalizeColorConvert(
+ std::vector>* processors);
} // namespace vision
} // namespace fastdeploy
diff --git a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/ResultListView.java b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/ResultListView.java
index a028c0f9c..62b48a054 100644
--- a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/ResultListView.java
+++ b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/ResultListView.java
@@ -5,10 +5,6 @@ import android.os.Handler;
import android.util.AttributeSet;
import android.widget.ListView;
-/**
- * Created by ruanshimin on 2018/5/14.
- */
-
public class ResultListView extends ListView {
public ResultListView(Context context) {
super(context);
diff --git a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/adapter/DetectResultAdapter.java b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/adapter/DetectResultAdapter.java
index 3aecc5d4d..404b9cbc5 100644
--- a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/adapter/DetectResultAdapter.java
+++ b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/adapter/DetectResultAdapter.java
@@ -15,10 +15,6 @@ import com.baidu.paddle.fastdeploy.app.ui.view.model.BaseResultModel;
import java.text.DecimalFormat;
import java.util.List;
-/**
- * Created by ruanshimin on 2018/5/13.
- */
-
public class DetectResultAdapter extends ArrayAdapter {
private int resourceId;
diff --git a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/model/BaseResultModel.java b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/model/BaseResultModel.java
index 5cab72c50..cae71b690 100644
--- a/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/model/BaseResultModel.java
+++ b/java/android/app/src/main/java/com/baidu/paddle/fastdeploy/app/ui/view/model/BaseResultModel.java
@@ -1,9 +1,5 @@
package com.baidu.paddle.fastdeploy.app.ui.view.model;
-/**
- * Created by ruanshimin on 2018/5/16.
- */
-
public class BaseResultModel {
private int index;
private String name;
diff --git a/java/android/app/src/main/res/values/strings.xml b/java/android/app/src/main/res/values/strings.xml
index a2128791f..2bd2e4355 100644
--- a/java/android/app/src/main/res/values/strings.xml
+++ b/java/android/app/src/main/res/values/strings.xml
@@ -2,8 +2,8 @@
EasyEdge
- FastDeploy PicoDet
- FastDeploy PP-OCRv2
+ EasyEdge
+ EasyEdge
CHOOSE_INSTALLED_MODEL_KEY
MODEL_DIR_KEY
diff --git a/tests/models/test_mobilenetv2.py b/tests/models/test_mobilenetv2.py
index 3bedc82f1..fdc273319 100755
--- a/tests/models/test_mobilenetv2.py
+++ b/tests/models/test_mobilenetv2.py
@@ -48,12 +48,10 @@ def test_classification_mobilenetv2():
im1 = cv2.imread("./resources/ILSVRC2012_val_00000010.jpeg")
im2 = cv2.imread("./resources/ILSVRC2012_val_00030010.jpeg")
- # for i in range(3000000):
- while True:
+ for i in range(3):
# test single predict
- model.postprocessor.topk = 6
- result1 = model.predict(im1)
- result2 = model.predict(im2)
+ result1 = model.predict(im1, 6)
+ result2 = model.predict(im2, 6)
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expected_label_ids_1))