mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Feature] Add Qwen25-VL Processor (#3501)
* add qwen-2.5-vl processor * add qwen25-vl processor * add qwen25-vl processor * add qwen25-vl processor * add qwen25-vl processor position_ids * add qwen25-vl processor * add qwen25-vl processor * position_ids * add test for qwen25-vl * organize comments * formatted * qwen_vl_processor * add qwen_vl_processor unittest * update model path * update model path * update qwen_vl_processor unittest * add unittest and bug fix * add unittest and bug fix * Update fastdeploy/input/qwen_mm_processor/image_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Update fastdeploy/input/qwen_vl_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> --------- Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
442
fastdeploy/input/qwen_mm_processor/image_processor.py
Normal file
442
fastdeploy/input/qwen_mm_processor/image_processor.py
Normal file
@@ -0,0 +1,442 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import PIL
|
||||
from paddleformers.transformers.feature_extraction_utils import BatchFeature
|
||||
from paddleformers.transformers.image_processing_utils import BaseImageProcessor
|
||||
from paddleformers.transformers.image_transforms import (
|
||||
normalize,
|
||||
rescale,
|
||||
resize,
|
||||
to_channel_dimension_format,
|
||||
)
|
||||
from paddleformers.transformers.image_utils import (
|
||||
ChannelDimension,
|
||||
ImageInput,
|
||||
PILImageResampling,
|
||||
get_image_size,
|
||||
infer_channel_dimension_format,
|
||||
make_list_of_images,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
)
|
||||
from paddleformers.transformers.tokenizer_utils_base import TensorType
|
||||
from PIL import Image
|
||||
|
||||
from fastdeploy.utils import data_processor_logger
|
||||
|
||||
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
||||
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
||||
|
||||
MIN_PIXELS = 4 * 28 * 28
|
||||
MAX_PIXELS = 16384 * 28 * 28
|
||||
|
||||
|
||||
VideoInput = Union[
|
||||
List["PIL.Image.Image"],
|
||||
"np.ndarray",
|
||||
"paddle.Tensor",
|
||||
List["np.ndarray"],
|
||||
List["paddle.Tensor"],
|
||||
List[List["PIL.Image.Image"]],
|
||||
List[List["np.ndarray"]],
|
||||
List[List["paddle.Tensor"]],
|
||||
]
|
||||
|
||||
|
||||
def round_by_factor(number: int, factor: int) -> int:
|
||||
"""
|
||||
Round number to nearest multiple of factor.
|
||||
|
||||
Args:
|
||||
number: Input number to round
|
||||
factor: Rounding factor
|
||||
|
||||
Returns:
|
||||
int: Rounded number
|
||||
"""
|
||||
return round(number / factor) * factor
|
||||
|
||||
|
||||
def ceil_by_factor(number: int, factor: int) -> int:
|
||||
"""
|
||||
Round number up to nearest multiple of factor.
|
||||
|
||||
Args:
|
||||
number: Input number to round
|
||||
factor: Rounding factor
|
||||
|
||||
Returns:
|
||||
int: Rounded number
|
||||
"""
|
||||
return math.ceil(number / factor) * factor
|
||||
|
||||
|
||||
def floor_by_factor(number: int, factor: int) -> int:
|
||||
"""
|
||||
Round number down to nearest multiple of factor.
|
||||
|
||||
Args:
|
||||
number: Input number to round
|
||||
factor: Rounding factor
|
||||
|
||||
Returns:
|
||||
int: Rounded number
|
||||
"""
|
||||
return math.floor(number / factor) * factor
|
||||
|
||||
|
||||
def smart_resize(height: int, width: int, factor: int, min_pixels: int, max_pixels: int, max_ratio: int = 200):
|
||||
"""
|
||||
Smart image resizing that maintains aspect ratio and respects constraints.
|
||||
|
||||
Args:
|
||||
height: Original image height
|
||||
width: Original image width
|
||||
factor: Patch size factor
|
||||
min_pixels: Minimum allowed pixels
|
||||
max_pixels: Maximum allowed pixels
|
||||
max_ratio: Maximum allowed aspect ratio
|
||||
|
||||
Returns:
|
||||
tuple: (new_height, new_width)
|
||||
|
||||
Raises:
|
||||
ValueError: If calculated dimensions are invalid
|
||||
"""
|
||||
if max(height, width) / min(height, width) > max_ratio:
|
||||
if height > width:
|
||||
new_width = max(factor, round_by_factor(width, factor))
|
||||
new_height = floor_by_factor(new_width * max_ratio, factor)
|
||||
else:
|
||||
new_height = max(factor, round_by_factor(height, factor))
|
||||
new_width = floor_by_factor(new_height * max_ratio, factor)
|
||||
|
||||
data_processor_logger.info(
|
||||
f"absolute aspect ratio must be smaller than {max_ratio}, got {max(height, width) / min(height, width)},\
|
||||
resize to {max(new_height, new_width) / min(new_height, new_width)}"
|
||||
)
|
||||
|
||||
height = new_height
|
||||
width = new_width
|
||||
|
||||
h_bar = max(factor, round_by_factor(height, factor))
|
||||
w_bar = max(factor, round_by_factor(width, factor))
|
||||
if h_bar * w_bar > max_pixels:
|
||||
beta = math.sqrt((height * width) / max_pixels)
|
||||
h_bar = floor_by_factor(height / beta, factor)
|
||||
w_bar = floor_by_factor(width / beta, factor)
|
||||
elif h_bar * w_bar < min_pixels:
|
||||
beta = math.sqrt(min_pixels / (height * width))
|
||||
h_bar = ceil_by_factor(height * beta, factor)
|
||||
w_bar = ceil_by_factor(width * beta, factor)
|
||||
|
||||
if min_pixels > h_bar * w_bar or h_bar * w_bar > max_pixels:
|
||||
raise ValueError(f"encounter invalid h_bar: {h_bar}, w_bar: {w_bar}")
|
||||
|
||||
return h_bar, w_bar
|
||||
|
||||
|
||||
def is_scaled_image(image: np.ndarray) -> bool:
|
||||
"""
|
||||
Check if image pixel values are already normalized to [0, 1] range.
|
||||
|
||||
Args:
|
||||
image: Input image array
|
||||
|
||||
Returns:
|
||||
bool: True if image is already scaled
|
||||
"""
|
||||
if image.dtype == np.uint8:
|
||||
return False
|
||||
|
||||
# It's possible the image has pixel values in [0, 255] but is of floating type
|
||||
return np.min(image) >= 0 and np.max(image) <= 1
|
||||
|
||||
|
||||
class ImageProcessor(BaseImageProcessor):
|
||||
"""
|
||||
Adaptive image processor for dynamic image resizing and preprocessing.
|
||||
|
||||
This processor handles image resizing, rescaling, normalization and format conversion.
|
||||
It dynamically adjusts image dimensions based on original size and specified constraints.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 14,
|
||||
merge_size: int = 2,
|
||||
temporal_patch_size: int = 2,
|
||||
min_pixels: int = MIN_PIXELS,
|
||||
max_pixels: int = MAX_PIXELS,
|
||||
image_mean: Union[float, List[float]] = OPENAI_CLIP_MEAN,
|
||||
image_std: Union[float, List[float]] = OPENAI_CLIP_STD,
|
||||
rescale_factor: float = 1 / 255,
|
||||
do_rescale: bool = True,
|
||||
do_normalize: bool = True,
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize image processor with configuration parameters.
|
||||
|
||||
Args:
|
||||
patch_size (int): Spatial patch size for vision encoder
|
||||
merge_size (int): Merge size between vision and LLM encoders
|
||||
temporal_patch_size (int): Temporal patch size for video processing
|
||||
min_pixels (int): Minimum allowed pixels in resized image
|
||||
max_pixels (int): Maximum allowed pixels in resized image
|
||||
image_mean (float/list): Mean values for normalization per channel
|
||||
image_std (float/list): Std values for normalization per channel
|
||||
rescale_factor (float): Scaling factor for pixel values (default 1/255)
|
||||
do_rescale (bool): Whether to rescale images
|
||||
do_normalize (bool): Whether to normalize images
|
||||
resample: Resampling method for image resizing
|
||||
**kwargs: Additional base class arguments
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self.patch_size = patch_size
|
||||
self.merge_size = merge_size
|
||||
self.temporal_patch_size = temporal_patch_size
|
||||
|
||||
self.min_pixels = min_pixels
|
||||
self.max_pixels = max_pixels
|
||||
|
||||
self.image_mean = image_mean
|
||||
self.image_std = image_std
|
||||
self.rescale_factor = rescale_factor
|
||||
self.do_rescale = do_rescale
|
||||
self.do_normalize = do_normalize
|
||||
|
||||
self.resample = resample
|
||||
|
||||
def _preprocess(
|
||||
self,
|
||||
images: Union[ImageInput, VideoInput],
|
||||
min_pixels: int,
|
||||
max_pixels: int,
|
||||
image_mean: Optional[Union[float, List[float]]],
|
||||
image_std: Optional[Union[float, List[float]]],
|
||||
rescale_factor: float,
|
||||
do_rescale: bool,
|
||||
do_normalize: bool,
|
||||
resample: PILImageResampling,
|
||||
data_format: Optional[ChannelDimension],
|
||||
input_data_format: Optional[Union[str, ChannelDimension]],
|
||||
):
|
||||
"""
|
||||
Internal method for image preprocessing pipeline.
|
||||
|
||||
Args:
|
||||
images: Input image or batch of images
|
||||
min_pixels: Minimum allowed pixels in output
|
||||
max_pixels: Maximum allowed pixels in output
|
||||
image_mean: Normalization mean values
|
||||
image_std: Normalization std values
|
||||
rescale_factor: Pixel value scaling factor
|
||||
do_rescale: Whether to rescale pixel values
|
||||
do_normalize: Whether to normalize pixel values
|
||||
resample: Resampling method
|
||||
data_format: Output channel format
|
||||
input_data_format: Input channel format
|
||||
|
||||
Returns:
|
||||
tuple: (flatten_patches, grid_dimensions)
|
||||
- flatten_patches: Flattened image patches
|
||||
- grid_dimensions: Grid dimensions [t, h, w]
|
||||
"""
|
||||
images = make_list_of_images(images)
|
||||
|
||||
# All transformations expect numpy arrays.
|
||||
images = [to_numpy_array(image) for image in images]
|
||||
|
||||
if is_scaled_image(images[0]) and do_rescale:
|
||||
data_processor_logger.warning(
|
||||
"It looks like you are trying to rescale already rescaled images. If the input"
|
||||
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
||||
)
|
||||
if input_data_format is None:
|
||||
# We assume that all images have the same channel dimension format.
|
||||
input_data_format = infer_channel_dimension_format(images[0])
|
||||
|
||||
# Get original dimensions and calculate optimal resize dimensions
|
||||
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
||||
resized_height, resized_width = smart_resize(
|
||||
height,
|
||||
width,
|
||||
factor=self.patch_size * self.merge_size, # Combine patch and merge factors
|
||||
min_pixels=min_pixels,
|
||||
max_pixels=max_pixels,
|
||||
)
|
||||
|
||||
processed_images = []
|
||||
for image in images:
|
||||
if height != resized_height or width != resized_width:
|
||||
# Convert to uint8 before resizing to avoid double scaling
|
||||
image = image.astype("uint8")
|
||||
# Convert to PIL Image and resize
|
||||
image = Image.fromarray(image)
|
||||
image = resize(
|
||||
image,
|
||||
size=(resized_height, resized_width),
|
||||
resample=resample,
|
||||
data_format=input_data_format,
|
||||
)
|
||||
|
||||
if do_rescale and do_normalize:
|
||||
# Adjust mean and std for combined rescale+normalize
|
||||
image_mean = np.array(image_mean, dtype=np.float32) * (1.0 / rescale_factor)
|
||||
image_std = np.array(image_std, dtype=np.float32) * (1.0 / rescale_factor)
|
||||
do_rescale = False # Skip separate rescale step
|
||||
|
||||
if do_rescale:
|
||||
image = image.astype(np.float32)
|
||||
image = rescale(image, scale=rescale_factor, data_format=input_data_format)
|
||||
|
||||
if do_normalize:
|
||||
image = image.astype(np.float32)
|
||||
image = normalize(
|
||||
image=image,
|
||||
mean=image_mean,
|
||||
std=image_std,
|
||||
data_format=input_data_format,
|
||||
)
|
||||
|
||||
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) # [C, H, W]
|
||||
processed_images.append(image)
|
||||
|
||||
# Convert processed images to numpy array
|
||||
patches = np.array(processed_images)
|
||||
|
||||
# Pad temporal dimension if needed
|
||||
if patches.shape[0] % self.temporal_patch_size != 0:
|
||||
repeats = np.repeat(
|
||||
patches[-1][np.newaxis],
|
||||
self.temporal_patch_size - (patches.shape[0] % self.temporal_patch_size),
|
||||
axis=0,
|
||||
)
|
||||
patches = np.concatenate([patches, repeats], axis=0)
|
||||
|
||||
# Convert to channels-first format if needed
|
||||
if data_format == ChannelDimension.LAST:
|
||||
patches = patches.transpose([0, 3, 1, 2]) # [N, H, W, C] -> [N, C, H, W]
|
||||
|
||||
grid_t, channel = patches.shape[:2]
|
||||
grid_t = grid_t // self.temporal_patch_size
|
||||
|
||||
grid_h, grid_w = (
|
||||
resized_height // self.patch_size,
|
||||
resized_width // self.patch_size,
|
||||
)
|
||||
# Reshape into hierarchical patch structure
|
||||
patches = patches.reshape(
|
||||
[
|
||||
grid_t,
|
||||
self.temporal_patch_size,
|
||||
channel,
|
||||
grid_h // self.merge_size,
|
||||
self.merge_size,
|
||||
self.patch_size,
|
||||
grid_w // self.merge_size,
|
||||
self.merge_size,
|
||||
self.patch_size,
|
||||
]
|
||||
)
|
||||
# Reorder dimensions for better memory access pattern
|
||||
# [grid_t, grid_h/merge_size, grid_w/merge_size, merge_size, merge_size, C, temporal_patch_size, psz, psz]
|
||||
patches = patches.transpose([0, 3, 6, 4, 7, 2, 1, 5, 8])
|
||||
|
||||
flatten_patches = patches.reshape(
|
||||
[
|
||||
grid_t * grid_h * grid_w,
|
||||
channel * self.temporal_patch_size * self.patch_size * self.patch_size,
|
||||
]
|
||||
)
|
||||
|
||||
return flatten_patches, np.array([grid_t, grid_h, grid_w])
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: Union[ImageInput, VideoInput],
|
||||
min_pixels: Optional[int] = None,
|
||||
max_pixels: Optional[int] = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
rescale_factor: Optional[float] = None,
|
||||
do_rescale: Optional[bool] = None,
|
||||
do_normalize: Optional[bool] = None,
|
||||
resample: Optional[PILImageResampling] = None,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.LAST,
|
||||
):
|
||||
"""
|
||||
Main preprocessing method for images/videos.
|
||||
|
||||
Args:
|
||||
images: Input image/video data
|
||||
min_pixels: Override for minimum pixels
|
||||
max_pixels: Override for maximum pixels
|
||||
image_mean: Override for normalization mean
|
||||
image_std: Override for normalization std
|
||||
rescale_factor: Override for rescaling factor
|
||||
do_rescale: Override for rescaling flag
|
||||
do_normalize: Override for normalization flag
|
||||
resample: Override for resampling method
|
||||
return_tensors: Desired output tensor format
|
||||
data_format: Output channel dimension format
|
||||
input_data_format: Input channel dimension format
|
||||
|
||||
Returns:
|
||||
BatchFeature: Processed features containing:
|
||||
- pixel_values: Preprocessed pixel data
|
||||
- grid_thw: Grid dimensions [temporal, height, width]
|
||||
|
||||
Raises:
|
||||
ValueError: For invalid image types or dimensions
|
||||
"""
|
||||
min_pixels = min_pixels if min_pixels is not None else self.min_pixels
|
||||
max_pixels = max_pixels if max_pixels is not None else self.max_pixels
|
||||
image_mean = image_mean if image_mean is not None else self.image_mean
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
||||
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
||||
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
||||
resample = resample if resample is not None else self.resample
|
||||
|
||||
if images is not None and not valid_images(images):
|
||||
raise ValueError("Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "paddle.Tensor.")
|
||||
|
||||
pixel_values, grid_thw = self._preprocess(
|
||||
images,
|
||||
min_pixels=min_pixels,
|
||||
max_pixels=max_pixels,
|
||||
image_mean=image_mean,
|
||||
image_std=image_std,
|
||||
rescale_factor=rescale_factor,
|
||||
do_rescale=do_rescale,
|
||||
do_normalize=do_normalize,
|
||||
resample=resample,
|
||||
data_format=data_format,
|
||||
input_data_format=input_data_format,
|
||||
)
|
||||
data = {"pixel_values": pixel_values, "grid_thw": grid_thw}
|
||||
return BatchFeature(data=data, tensor_type=return_tensors)
|
Reference in New Issue
Block a user