polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" UT for air_topp_sampling kernel """
"""UT for air_topp_sampling kernel"""
import subprocess
import unittest
@@ -20,11 +20,12 @@ import numpy as np
import paddle
from fastdeploy.model_executor.layers.quantization.ops import (
cutlass_scaled_mm, scaled_fp8_quant)
cutlass_scaled_mm,
scaled_fp8_quant,
)
class Test(unittest.TestCase):
def setUp(self):
"""
Initialize.
@@ -35,8 +36,7 @@ class Test(unittest.TestCase):
self.sm_version = self.prop.major * 10 + self.prop.minor
print(self.prop)
print(paddle.__git_commit__)
nvcc_output = subprocess.check_output(["nvcc", "--version"],
universal_newlines=True)
nvcc_output = subprocess.check_output(["nvcc", "--version"], universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
self.nvcc_cuda_version = float(output[release_idx].split(",")[0])
@@ -46,8 +46,7 @@ class Test(unittest.TestCase):
Check cutlass_scaled_mm output.
"""
if self.sm_version < 89:
self.skipTest(
"cutlass_scaled_mm with fp8 input only support sm89+")
self.skipTest("cutlass_scaled_mm with fp8 input only support sm89+")
M = 32
N = 1024
K = 1024
@@ -59,10 +58,8 @@ class Test(unittest.TestCase):
# Ensure quantized tensors and scales are valid
assert a_q.numel() > 0, "Quantized tensor 'a_q' must not be empty"
assert b_q.numel() > 0, "Quantized tensor 'b_q' must not be empty"
assert a_scales.numel(
) > 0, "Scale tensor 'a_scales' must not be empty"
assert b_scales.numel(
) > 0, "Scale tensor 'b_scales' must not be empty"
assert a_scales.numel() > 0, "Scale tensor 'a_scales' must not be empty"
assert b_scales.numel() > 0, "Scale tensor 'b_scales' must not be empty"
bias = paddle.rand([N], dtype=paddle.bfloat16)
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)