mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -21,26 +21,19 @@ from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
||||
|
||||
|
||||
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
|
||||
fake_logits = paddle.full(shape=[batch_size, vocab_size],
|
||||
fill_value=1e-2,
|
||||
dtype="float32")
|
||||
fake_logits = paddle.full(shape=[batch_size, vocab_size], fill_value=1e-2, dtype="float32")
|
||||
return fake_logits
|
||||
|
||||
|
||||
def _create_penalty_tensor(batch_size: int,
|
||||
penalty_value: float) -> paddle.Tensor:
|
||||
return paddle.full(shape=[batch_size, 1],
|
||||
fill_value=penalty_value,
|
||||
dtype="float32")
|
||||
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
|
||||
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
|
||||
|
||||
|
||||
def _create_tokens_tensor(
|
||||
batch_size: int,
|
||||
max_seq_len: int,
|
||||
) -> paddle.Tensor:
|
||||
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len],
|
||||
fill_value=-1,
|
||||
dtype="int64")
|
||||
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
|
||||
return pre_token_ids
|
||||
|
||||
|
||||
@@ -51,34 +44,18 @@ def _create_default_sampling_metadata(
|
||||
) -> SamplingMetadata:
|
||||
|
||||
fake_sampling_metadata = SamplingMetadata(
|
||||
temperature=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=0.9,
|
||||
dtype="float32"),
|
||||
top_p=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=0.7,
|
||||
dtype="float32"),
|
||||
prompt_ids=paddle.full(shape=[batch_size, max_seq_len],
|
||||
fill_value=0,
|
||||
dtype="int64"),
|
||||
prompt_lens=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=5,
|
||||
dtype="int64"),
|
||||
step_idx=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=0,
|
||||
dtype="int64"),
|
||||
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
|
||||
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
|
||||
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
|
||||
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
|
||||
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
|
||||
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
|
||||
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
|
||||
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
|
||||
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
|
||||
min_dec_lens=paddle.full(shape=[batch_size, 1],
|
||||
fill_value=min_seq_len,
|
||||
dtype="int64"),
|
||||
bad_words_token_ids=paddle.full(shape=[batch_size],
|
||||
fill_value=-1,
|
||||
dtype="int64"),
|
||||
eos_token_ids=paddle.full(shape=[batch_size],
|
||||
fill_value=-2,
|
||||
dtype="int64"),
|
||||
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
|
||||
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
|
||||
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
|
||||
)
|
||||
return fake_sampling_metadata
|
||||
|
||||
@@ -91,8 +68,7 @@ def test_sampler():
|
||||
|
||||
sampler = Sampler()
|
||||
logits = _create_fake_logits(batch_size, vocab_size)
|
||||
sampling_metadata = _create_default_sampling_metadata(
|
||||
batch_size, min_seq_len, max_seq_len)
|
||||
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
|
||||
next_tokens = sampler(logits, sampling_metadata)
|
||||
print(next_tokens)
|
||||
|
||||
|
Reference in New Issue
Block a user