mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-27 18:41:02 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -13,11 +13,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import gc
|
||||
from typing import List, Optional
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
@@ -46,8 +47,7 @@ class XpuWorker(WorkerBase):
|
||||
pass
|
||||
|
||||
def init_device(self):
|
||||
""" Initialize device and Construct model runner
|
||||
"""
|
||||
"""Initialize device and Construct model runner"""
|
||||
if paddle.is_compiled_with_xpu():
|
||||
# Set evironment variable
|
||||
self.device = f"xpu:{self.local_rank}"
|
||||
@@ -57,19 +57,19 @@ class XpuWorker(WorkerBase):
|
||||
|
||||
gc.collect()
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Not support device type: {self.device_config.device}")
|
||||
raise RuntimeError(f"Not support device type: {self.device_config.device}")
|
||||
|
||||
# Construct model runner
|
||||
self.model_runner: XPUModelRunner = XPUModelRunner(
|
||||
fd_config=self.fd_config,
|
||||
device=self.device,
|
||||
rank=self.rank,
|
||||
local_rank=self.local_rank)
|
||||
local_rank=self.local_rank,
|
||||
)
|
||||
|
||||
def graph_optimize_and_warm_up_model(self) -> None:
|
||||
"""
|
||||
Optimizes the inference graph using the specified optimization options.
|
||||
Optimizes the inference graph using the specified optimization options.
|
||||
"""
|
||||
logger.warn("XPU current could not graph optimize and warm up model")
|
||||
|
||||
@@ -87,15 +87,19 @@ class XpuWorker(WorkerBase):
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
from fastdeploy.model_executor.ops.xpu import (
|
||||
xpu_get_free_global_memory, xpu_get_total_global_memory,
|
||||
xpu_get_used_global_memory)
|
||||
xpu_get_free_global_memory,
|
||||
xpu_get_total_global_memory,
|
||||
xpu_get_used_global_memory,
|
||||
)
|
||||
|
||||
total_memory = xpu_get_total_global_memory(self.local_rank)
|
||||
used_memory = xpu_get_used_global_memory(self.local_rank)
|
||||
free_memory = xpu_get_free_global_memory(self.local_rank)
|
||||
|
||||
logger.info(f"Before warm up, total_memory: {total_memory}, \
|
||||
used_memory: {used_memory}, free_memory: {free_memory}")
|
||||
logger.info(
|
||||
f"Before warm up, total_memory: {total_memory}, \
|
||||
used_memory: {used_memory}, free_memory: {free_memory}"
|
||||
)
|
||||
|
||||
self.model_runner.prepare_profile()
|
||||
self.model_runner.profile_run()
|
||||
@@ -108,8 +112,10 @@ class XpuWorker(WorkerBase):
|
||||
|
||||
self.model_runner.clear_block_table()
|
||||
|
||||
logger.info(f"After warm up, total_available_memory: {total_available_memory}, \
|
||||
used_memory: {used_memory}, available_kv_cache_memory: {available_kv_cache_memory}")
|
||||
logger.info(
|
||||
f"After warm up, total_available_memory: {total_available_memory}, \
|
||||
used_memory: {used_memory}, available_kv_cache_memory: {available_kv_cache_memory}"
|
||||
)
|
||||
paddle.device.xpu.empty_cache()
|
||||
return available_kv_cache_memory # approximate value
|
||||
|
||||
@@ -125,8 +131,7 @@ class XpuWorker(WorkerBase):
|
||||
""" """
|
||||
return self.model_runner.get_model()
|
||||
|
||||
def initialize_cache(self, num_gpu_blocks: int,
|
||||
num_cpu_blocks: int) -> None:
|
||||
def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None:
|
||||
""" """
|
||||
pass
|
||||
|
||||
@@ -145,7 +150,7 @@ class XpuWorker(WorkerBase):
|
||||
return self.model_runner.prefill_finished()
|
||||
|
||||
def preprocess_new_task(self, req_dicts: List[Request]) -> None:
|
||||
""" Process new requests and then start the decode loop
|
||||
"""Process new requests and then start the decode loop
|
||||
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
|
||||
and workers and modelrunners should not perceive it.
|
||||
"""
|
||||
@@ -157,5 +162,4 @@ class XpuWorker(WorkerBase):
|
||||
|
||||
def reinitialize_kv_cache(self, num_gpu_blocks: int) -> None:
|
||||
""" """
|
||||
self.model_runner.update_share_input_block_num(
|
||||
num_gpu_blocks=num_gpu_blocks)
|
||||
self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
|
||||
|
||||
Reference in New Issue
Block a user