polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import json
import time
@@ -21,17 +22,23 @@ from typing import List
import numpy as np
import paddle
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
from paddle.distributed import fleet
from fastdeploy.config import (DecodingConfig, DeviceConfig, FDConfig,
GraphOptimizationConfig, LoadConfig,
ModelConfig, ParallelConfig, SpeculativeConfig,
ErnieArchitectures)
from fastdeploy.config import (
DecodingConfig,
DeviceConfig,
ErnieArchitectures,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SpeculativeConfig,
)
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
from fastdeploy.inter_communicator import EngineWorkerQueue as TaskQueue
from fastdeploy.inter_communicator import IPCSignal
from fastdeploy.model_executor.layers.quantization import \
get_quantization_config
from fastdeploy.model_executor.layers.quantization import get_quantization_config
from fastdeploy.platforms import current_platform
from fastdeploy.utils import get_logger, none_or_str
from fastdeploy.worker.worker_base import WorkerBase
@@ -47,24 +54,28 @@ def get_worker(fd_config: FDConfig, local_rank: int, rank: int) -> WorkerBase:
raise NotImplementedError("Only CUDA platform supports logprob.")
if current_platform.is_dcu():
from fastdeploy.worker.dcu_worker import DcuWorker
return DcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_cuda():
from fastdeploy.worker.gpu_worker import GpuWorker
return GpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_xpu():
from fastdeploy.worker.xpu_worker import XpuWorker
return XpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_iluvatar():
from fastdeploy.worker.iluvatar_worker import IluvatarWorker
return IluvatarWorker(fd_config=fd_config,
local_rank=local_rank,
rank=rank)
return IluvatarWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_gcu():
from fastdeploy.worker.gcu_worker import GcuWorker
return GcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
def init_distributed_environment(seed: int = 20) -> List[int]:
""" Initialize Paddle Fleet and get rank of worker """
"""Initialize Paddle Fleet and get rank of worker"""
# Global rank
ranks = dist.get_world_size()
dist_strategy = fleet.DistributedStrategy()
@@ -85,6 +96,7 @@ def init_distributed_environment(seed: int = 20) -> List[int]:
return ranks, local_rank
def update_fd_config_for_mm(fd_config: FDConfig) -> None:
if fd_config.model_config.enable_mm:
tokenizer = ErnieBotTokenizer.from_pretrained(
@@ -103,13 +115,12 @@ def update_fd_config_for_mm(fd_config: FDConfig) -> None:
vision_config.dtype = fd_config.model_config.dtype
# vision_config.tensor_parallel_degree = fd_config.parallel_config.tensor_parallel_size
# vision_config.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
fd_config.model_config.im_patch_id = tokenizer.get_vocab()[
"<|IMAGE_PLACEHOLDER|>"
]
fd_config.model_config.im_patch_id = tokenizer.get_vocab()["<|IMAGE_PLACEHOLDER|>"]
fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
fd_config.model_config.sequence_parallel = fd_config.parallel_config.sequence_parallel
class PaddleDisWorkerProc():
class PaddleDisWorkerProc:
"""
Paddle Distrubuted wrapper for fastdeploy.worker.Worker,
for handling single-node multi-GPU tensor parallel.
@@ -117,12 +128,7 @@ class PaddleDisWorkerProc():
in the task queue. Control flow is transmitted by IPC.
"""
def __init__(
self,
fd_config: FDConfig,
ranks: int = 1,
local_rank: int = 0
) -> None:
def __init__(self, fd_config: FDConfig, ranks: int = 1, local_rank: int = 0) -> None:
"""
Initialize a distributed worker and task queue for single-node multi-GPU setup.
Args:
@@ -136,20 +142,21 @@ class PaddleDisWorkerProc():
self.parallel_config = fd_config.parallel_config
# TODO(gongshaotian): Use worker factory to get worker
self.worker = get_worker(fd_config=fd_config,
local_rank=self.local_rank,
rank=self.ranks)
self.worker = get_worker(fd_config=fd_config, local_rank=self.local_rank, rank=self.ranks)
# Initialize task queue
task_address = (self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port)
task_address = (
self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port,
)
self.task_queue = TaskQueue(
address=task_address,
is_server=False,
num_client=self.parallel_config.tensor_parallel_size,
client_id=self.parallel_config.tensor_parallel_rank,
local_data_parallel_id=self.parallel_config.expert_parallel_rank)
local_data_parallel_id=self.parallel_config.expert_parallel_rank,
)
def init_health_status(self) -> None:
"""
@@ -164,17 +171,18 @@ class PaddleDisWorkerProc():
# init worker_ready_signal
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
array_size = min(
self.max_chips_per_node, self.parallel_config.tensor_parallel_size *
self.parallel_config.expert_parallel_size)
self.max_chips_per_node,
self.parallel_config.tensor_parallel_size * self.parallel_config.expert_parallel_size,
)
workers_ready = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_ready_signal = IPCSignal(
name="worker_ready_signal",
array=workers_ready,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
self.worker_ready_signal.value[self.local_rank %
self.max_chips_per_node] = 1
create=False,
)
self.worker_ready_signal.value[self.local_rank % self.max_chips_per_node] = 1
# init worker_healthy_live_signal
workers_alive = np.zeros(shape=[array_size], dtype=np.int32)
@@ -183,9 +191,9 @@ class PaddleDisWorkerProc():
array=workers_alive,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
self.worker_healthy_live_signal.value[self.local_rank % 8] = int(
time.time())
create=False,
)
self.worker_healthy_live_signal.value[self.local_rank % 8] = int(time.time())
# init model_weights_status
workers_model_weights = np.zeros(shape=[1], dtype=np.int32)
@@ -194,28 +202,28 @@ class PaddleDisWorkerProc():
array=workers_model_weights,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
create=False,
)
# init exist_task_signal
workers_exist_task = np.zeros(
[self.parallel_config.expert_parallel_size], dtype=np.int32)
workers_exist_task = np.zeros([self.parallel_config.expert_parallel_size], dtype=np.int32)
self.exist_task_signal = IPCSignal(
name="exist_task_signal",
array=workers_exist_task,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
create=False,
)
# init exist_swapped_task_signal
workers_swapped_task = np.zeros(
shape=[self.parallel_config.expert_parallel_size],
dtype=np.int32)
workers_swapped_task = np.zeros(shape=[self.parallel_config.expert_parallel_size], dtype=np.int32)
self.exist_swapped_task_signal = IPCSignal(
name="exist_swapped_task_signal",
array=workers_swapped_task,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
create=False,
)
# init exist_prefill_task_signal
exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32)
@@ -224,26 +232,27 @@ class PaddleDisWorkerProc():
array=exist_prefill_task_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
create=False,
)
def event_loop_ep(self) -> None:
"""
Tmp loop function for ep utill DP is supported
"""
while True:
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(
time.time())
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
if self.fd_config.parallel_config.tensor_parallel_rank == 0 and self.task_queue.num_tasks(
) > 0:
if self.fd_config.parallel_config.tensor_parallel_rank == 0 and self.task_queue.num_tasks() > 0:
tasks, read_finish = self.task_queue.get_tasks()
req_dicts = []
for req_dict, bsz in tasks:
num_running_requests = int(bsz)
req_dicts.extend(req_dict)
logger.info(f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, " \
f"num_insert_requests: {len(req_dicts)}")
logger.info(
f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, "
f"num_insert_requests: {len(req_dicts)}"
)
# Process prefill inputs
self.worker.preprocess_new_task(req_dicts)
@@ -252,7 +261,7 @@ class PaddleDisWorkerProc():
self.worker.execute_model()
def event_loop_normal(self) -> None:
""" Main event loop for Paddle Distrubuted Workers.
"""Main event loop for Paddle Distrubuted Workers.
TODO(gongshaotian): support remote calling of functions that control worker.
"""
# Currently, only support single node
@@ -271,18 +280,15 @@ class PaddleDisWorkerProc():
paddle.distributed.barrier()
self.insert_step = False
self.worker_healthy_live_signal.value[self.local_rank] = int(
time.time())
self.worker_healthy_live_signal.value[self.local_rank] = int(time.time())
# The first worker detects whether there are tasks in the task queue
if self.local_rank % mp_num_per_node == 0:
if self.local_rank % mp_num_per_node == 0:
if self.task_queue.num_tasks() > 0:
if self.nnode > 1:
self.task_queue.read_finish_flag.set(1)
else:
self.exist_task_signal.value[
self.fd_config.parallel_config.
expert_parallel_rank] = 1
self.exist_task_signal.value[self.fd_config.parallel_config.expert_parallel_rank] = 1
if self.parallel_config.tensor_parallel_size > 1:
# Synchronize the signal for other workers
@@ -291,23 +297,27 @@ class PaddleDisWorkerProc():
if self.fd_config.load_config.dynamic_load_weight:
if self.exist_task_signal.value[0] == 2:
from fastdeploy.rl.dynamic_weight_manager import \
DynamicWeightManager
DynamicWeightManager.check_model_weights_status(
self.model_weights_status, self.worker.model_runner,
self.parallel_config.engine_pid)
from fastdeploy.rl.dynamic_weight_manager import (
DynamicWeightManager,
)
if self.exist_task_signal.value[
self.fd_config.parallel_config.expert_parallel_rank] == 1 or \
self.task_queue.read_finish_flag.get() == 1:
DynamicWeightManager.check_model_weights_status(
self.model_weights_status,
self.worker.model_runner,
self.parallel_config.engine_pid,
)
if (
self.exist_task_signal.value[self.fd_config.parallel_config.expert_parallel_rank] == 1
or self.task_queue.read_finish_flag.get() == 1
):
logger.info(f"Rank: {self.local_rank} Detected new requests.")
self.insert_step = True
tasks, read_finish = self.task_queue.get_tasks()
if read_finish:
# Ensure that every worker get the task
self.exist_task_signal.value[self.fd_config.parallel_config
.expert_parallel_rank] = 0
self.exist_task_signal.value[self.fd_config.parallel_config.expert_parallel_rank] = 0
self.task_queue.read_finish_flag.set(0)
req_dicts = []
@@ -316,8 +326,10 @@ class PaddleDisWorkerProc():
req_dicts.extend(req_dict)
req_ids = [req.request_id for req in req_dicts]
logger.info(f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, " \
f"num_insert_requests: {len(req_dicts)}, req_ids: {req_ids}")
logger.info(
f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, "
f"num_insert_requests: {len(req_dicts)}, req_ids: {req_ids}"
)
# Process prefill inputs
self.worker.preprocess_new_task(req_dicts)
@@ -333,9 +345,7 @@ class PaddleDisWorkerProc():
# These generated tokens can be obtained through get_output op.
self.worker.execute_model(req_dicts)
self.exist_prefill_task_signal.value[
0] = self.worker.prefill_finished()
self.exist_prefill_task_signal.value[0] = self.worker.prefill_finished()
def determine_num_available_blocks(self) -> None:
"""Profiles the peak memory usage of the model to determine how many
@@ -351,64 +361,51 @@ class PaddleDisWorkerProc():
"""
if self.fd_config.parallel_config.do_profile:
# 1. Get available memory(bytes)
available_kv_cache_memory = self.worker.determine_available_memory(
)
logger.info(
f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------"
)
available_kv_cache_memory = self.worker.determine_available_memory()
logger.info(f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------")
# 2. Calculate the appropriate number of blocks
model_block_memory_used = self.worker.cal_theortical_kvcache()
num_blocks_local = int(available_kv_cache_memory //
model_block_memory_used)
num_blocks_local = int(available_kv_cache_memory // model_block_memory_used)
# NOTE(liuzichang): Too many block will lead to illegal memory access
# We will develop dynamic limits in future.
if num_blocks_local > 40000:
logger.info(
f"------- Reset num_blocks_local {num_blocks_local} to 40000"
)
logger.info(f"------- Reset num_blocks_local {num_blocks_local} to 40000")
num_blocks_local = min(40000, num_blocks_local)
logger.info(
f"------- model_block_memory_used:{model_block_memory_used} --------"
)
logger.info(
f"------- num_blocks_local:{num_blocks_local} --------")
logger.info(f"------- model_block_memory_used:{model_block_memory_used} --------")
logger.info(f"------- num_blocks_local:{num_blocks_local} --------")
logger.info(
f"self.fd_config.parallel_config.do_profile:{self.fd_config.parallel_config.do_profile}"
)
logger.info(f"self.fd_config.parallel_config.do_profile:{self.fd_config.parallel_config.do_profile}")
# 3. Send IPCSignal
get_profile_block_num = np.zeros(shape=[self.ranks],
dtype=np.int32)
get_profile_block_num = np.zeros(shape=[self.ranks], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal(
name="get_profile_block_num",
array=get_profile_block_num,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False)
self.get_profile_block_num_signal.value[
self.local_rank] = num_blocks_local
create=False,
)
self.get_profile_block_num_signal.value[self.local_rank] = num_blocks_local
# Wait all worker send the signal
while np.any(self.get_profile_block_num_signal.value <= 0):
time.sleep(0.01)
num_blocks_global = self.get_profile_block_num_signal.value.min(
).item()
num_blocks_global = self.get_profile_block_num_signal.value.min().item()
if num_blocks_global < 0:
logger.error(
"The total number of blocks cannot be less than zero."
"Please increase gpu_memory_utilization"
"Or decrease max_num_batched_tokens(max model length) ")
"Or decrease max_num_batched_tokens(max model length) "
)
raise ValueError(
"The total number of blocks cannot be less than zero."
"Please increase gpu_memory_utilization"
"Or decrease max_num_batched_tokens(max model length) ")
"Or decrease max_num_batched_tokens(max model length) "
)
self.get_profile_block_num_signal.value[
self.local_rank] = num_blocks_global
self.get_profile_block_num_signal.value[self.local_rank] = num_blocks_global
else:
num_blocks_global = self.fd_config.parallel_config.total_block_num
# NOTE(liuzichang): Too big num_blocks_global will lead to error 700
@@ -416,11 +413,11 @@ class PaddleDisWorkerProc():
self.worker.reinitialize_kv_cache(num_gpu_blocks=num_blocks_global)
def init_device(self) -> None:
""" Initialize device and Construct model runner """
"""Initialize device and Construct model runner"""
self.worker.init_device()
def load_model(self) -> None:
""" Load weights and create model """
"""Load weights and create model"""
self.worker.load_model()
@@ -429,66 +426,44 @@ def parse_args():
Parse args from command line
"""
parser = argparse.ArgumentParser("FastDeploy LLM Inference")
parser.add_argument("-m",
"--model_name_or_path",
type=str,
default="./output",
help="model dir")
parser.add_argument("-mbs",
"--max_num_seqs",
type=int,
default=34,
help="max batch size")
parser.add_argument(
"-m",
"--model_name_or_path",
type=str,
default="./output",
help="model dir",
)
parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size")
parser.add_argument("--total_block_num", type=int, default=2000)
parser.add_argument("--block_size", type=int, default=64)
parser.add_argument("--pod_ip", type=str, default="127.0.0.1")
parser.add_argument("--engine_worker_queue_port", type=int, default=9923)
parser.add_argument("--max_model_len",
type=int,
default=3072,
help="max model len")
parser.add_argument("--device_ids",
type=str,
default="0",
help="cuda visible devices")
parser.add_argument("--dtype",
type=str,
default="bfloat16",
help="input dtype")
parser.add_argument("--enc_dec_block_num",
type=int,
default=1,
help="encoder's decoder num")
parser.add_argument("--kv_cache_ratio",
type=float,
default=0.7,
help="kv cache ratio for input")
parser.add_argument("--first_token_id",
type=int,
default=1,
help="first token id")
parser.add_argument("--gpu_memory_utilization",
type=float,
default=0.9,
help="gpu memory utilization")
parser.add_argument("--engine_pid",
type=int,
default=None,
help="Process ID of engine")
parser.add_argument("--do_profile",
action='store_true',
help="do profile or not")
parser.add_argument("--pad_token_id",
type=int,
default=-1,
help="pad token id")
parser.add_argument("--eos_tokens_lens",
type=int,
default=2,
help="eos token lens")
parser.add_argument("--enable_chunked_prefill",
action='store_true',
help="enable chunked prefill")
parser.add_argument("--max_model_len", type=int, default=3072, help="max model len")
parser.add_argument("--device_ids", type=str, default="0", help="cuda visible devices")
parser.add_argument("--dtype", type=str, default="bfloat16", help="input dtype")
parser.add_argument("--enc_dec_block_num", type=int, default=1, help="encoder's decoder num")
parser.add_argument(
"--kv_cache_ratio",
type=float,
default=0.7,
help="kv cache ratio for input",
)
parser.add_argument("--first_token_id", type=int, default=1, help="first token id")
parser.add_argument(
"--gpu_memory_utilization",
type=float,
default=0.9,
help="gpu memory utilization",
)
parser.add_argument("--engine_pid", type=int, default=None, help="Process ID of engine")
parser.add_argument("--do_profile", action="store_true", help="do profile or not")
parser.add_argument("--pad_token_id", type=int, default=-1, help="pad token id")
parser.add_argument("--eos_tokens_lens", type=int, default=2, help="eos token lens")
parser.add_argument(
"--enable_chunked_prefill",
action="store_true",
help="enable chunked prefill",
)
parser.add_argument(
"--speculative_method",
default=None,
@@ -519,71 +494,90 @@ def parse_args():
default=False,
type=bool,
)
parser.add_argument("--max_num_batched_tokens",
type=int,
default=2048,
help="max num batched tokens")
parser.add_argument(
"--max_num_batched_tokens",
type=int,
default=2048,
help="max num batched tokens",
)
parser.add_argument("--enable_prefix_caching",
action='store_true',
help="enable prefix cache")
parser.add_argument("--enable-custom-all-reduce",
action='store_true',
help="enable custom all-reduce")
parser.add_argument("--splitwise_role",
type=str,
default="mixed",
help="splitwise role")
parser.add_argument("--tensor_parallel_size",
type=int,
default=1,
help="tensor parallel size")
parser.add_argument("--expert_parallel_size",
type=int,
default=1,
help="expert parallel size")
parser.add_argument("--enable_expert_parallel",
action='store_true',
help="enable expert parallel")
parser.add_argument(
"--enable_prefix_caching",
action="store_true",
help="enable prefix cache",
)
parser.add_argument(
"--enable-custom-all-reduce",
action="store_true",
help="enable custom all-reduce",
)
parser.add_argument("--splitwise_role", type=str, default="mixed", help="splitwise role")
parser.add_argument(
"--tensor_parallel_size",
type=int,
default=1,
help="tensor parallel size",
)
parser.add_argument(
"--expert_parallel_size",
type=int,
default=1,
help="expert parallel size",
)
parser.add_argument(
"--enable_expert_parallel",
action="store_true",
help="enable expert parallel",
)
parser.add_argument("--ori_vocab_size", type=int, default=None)
parser.add_argument("--quantization",
type=str,
default="None",
help="Quantization name for the model, currentlly support " \
"'wint4', 'wint8'," \
"default is None. The priority of this configuration "\
"is lower than that of the config file. " \
"More complex quantization methods need to be configured via the config file.")
parser.add_argument("--graph_optimization_config",
type=json.loads,
default=None,
help=" Configation of Graph optimization backend. "
parser.add_argument(
"--quantization",
type=str,
default="None",
help="Quantization name for the model, currentlly support "
"'wint4', 'wint8',"
"default is None. The priority of this configuration "
"is lower than that of the config file. "
"More complex quantization methods need to be configured via the config file.",
)
parser.add_argument(
"--graph_optimization_config",
type=json.loads,
default=None,
help=" Configation of Graph optimization backend. ",
)
parser.add_argument(
"--guided_decoding_backend",
type=str,
default="off",
help="guided decoding backend",
)
parser.add_argument(
"--disable_any_whitespace",
action="store_false",
help="Disable any whitespace for guided decoding.",
)
parser.add_argument(
"--dynamic_load_weight",
action="store_true",
help="Enable dynamic weight loading strategy",
)
parser.add_argument("--guided_decoding_backend",
type=str,
default="off",
help="guided decoding backend")
parser.add_argument("--disable_any_whitespace",
action='store_false',
help="Disable any whitespace for guided decoding.")
parser.add_argument("--dynamic_load_weight",
action='store_true',
help="Enable dynamic weight loading strategy")
parser.add_argument(
"--load_strategy",
type=str,
choices=['ipc', 'ipc_snapshot'],
choices=["ipc", "ipc_snapshot"],
default="ipc_snapshot",
help="Weight loading method when dynamic loading is enabled: "
"'ipc': real-time IPC streaming with automatic resharding, "
"'ipc_snapshot': load from disk snapshot of IPC weights.")
parser.add_argument("--enable_mm",
action='store_true',
help="Whether to enable vl model")
parser.add_argument("--enable_logprob",
action='store_true',
help="Enable output of token-level log probabilities.")
"'ipc_snapshot': load from disk snapshot of IPC weights.",
)
parser.add_argument("--enable_mm", action="store_true", help="Whether to enable vl model")
parser.add_argument(
"--enable_logprob",
action="store_true",
help="Enable output of token-level log probabilities.",
)
args = parser.parse_args()
return args
@@ -615,7 +609,7 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
else:
num_experts = model_config.moe_num_experts
num_experts_per_rank = num_experts // args.expert_parallel_size
num_experts_per_rank = num_experts // args.expert_parallel_size
num_experts_start_offset = expert_parallel_rank * num_experts_per_rank
parallel_config.expert_parallel_rank = expert_parallel_rank
@@ -629,7 +623,7 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
graph_opt_config = GraphOptimizationConfig(
use_cudagraph=args.graph_optimization_config["use_cudagraph"],
graph_opt_level=args.graph_optimization_config["graph_opt_level"],
cudagraph_capture_sizes=args.graph_optimization_config["cudagraph_capture_sizes"]
cudagraph_capture_sizes=args.graph_optimization_config["cudagraph_capture_sizes"],
)
# Note(tangbinhan): used for load_checkpoint
@@ -639,14 +633,10 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
model_config.pretrained_config.head_dim = model_config.head_dim
logger.info(f"parallel_config.use_ep {parallel_config.use_ep}")
logger.info(
f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}"
)
logger.info(
f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}"
)
logger.info(f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}")
logger.info(f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}")
if getattr(model_config, 'num_hidden_layers', None) is None:
if getattr(model_config, "num_hidden_layers", None) is None:
raise ValueError("num_hidden_layers is None")
quantization_config = model_config.quantization_config
@@ -656,11 +646,8 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
model_config.is_quantized = True
quant_config_name = None
if quantization_config is not None and quantization_config.get(
"quantization", None) is None:
raise ValueError(
"quantization_config should have a key named 'quantization' for specify quant config."
)
if quantization_config is not None and quantization_config.get("quantization", None) is None:
raise ValueError("quantization_config should have a key named 'quantization' for specify quant config.")
if quantization_config is not None:
quant_config_name = quantization_config["quantization"]
@@ -688,32 +675,29 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
logger.info("===========quantization_config==============")
if quant_config is not None:
if model_config.is_quantized:
logger.info(
"Model Status: Offline Quantized (pre-quantized weights loaded)"
)
logger.info("Model Status: Offline Quantized (pre-quantized weights loaded)")
else:
logger.info(
"Model Status: Original (will apply online quantization)")
logger.info("Model Status: Original (will apply online quantization)")
logger.info(f"{quantization_config}")
else:
logger.info(
"No quantization config found and use original weight and act dtype."
)
logger.info("No quantization config found and use original weight and act dtype.")
# Set VL tag
model_config.enable_mm = args.enable_mm
logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}")
logger.info(f"- Load strategy: {load_config.load_strategy}")
fd_config = FDConfig(model_config=model_config,
parallel_config=parallel_config,
speculative_config=speculative_config,
device_config=device_config,
load_config=load_config,
decoding_config=decoding_config,
quant_config=quant_config,
graph_opt_config=graph_opt_config)
fd_config = FDConfig(
model_config=model_config,
parallel_config=parallel_config,
speculative_config=speculative_config,
device_config=device_config,
load_config=load_config,
decoding_config=decoding_config,
quant_config=quant_config,
graph_opt_config=graph_opt_config,
)
update_fd_config_for_mm(fd_config)
return fd_config