polish code with new pre-commit rule (#2923)

This commit is contained in:
Zero Rains
2025-07-19 23:19:27 +08:00
committed by GitHub
parent b8676d71a8
commit 25698d56d1
424 changed files with 14307 additions and 13518 deletions

View File

@@ -1,6 +1,7 @@
"""
This file is copied from https://github.com/deepseek-ai/EPLB/blob/main/eplb.py
"""
"""Expert Parallelism Load Balancer (EPLB)"""
from typing import Tuple
@@ -8,8 +9,7 @@ from typing import Tuple
import numpy as np
def balanced_packing(weight: np.ndarray,
num_packs: int) -> Tuple[np.ndarray, np.ndarray]:
def balanced_packing(weight: np.ndarray, num_packs: int) -> Tuple[np.ndarray, np.ndarray]:
"""
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs
are as balanced as possible.
@@ -27,10 +27,7 @@ def balanced_packing(weight: np.ndarray,
groups_per_pack = num_groups // num_packs
if groups_per_pack == 1:
pack_index = np.arange(weight.shape[-1],
dtype=np.int32).reshape(1,
-1).repeat(num_layers,
axis=0)
pack_index = np.arange(weight.shape[-1], dtype=np.int32).reshape(1, -1).repeat(num_layers, axis=0)
rank_in_pack = np.zeros_like(weight, dtype=np.int32)
return pack_index, rank_in_pack
@@ -42,9 +39,9 @@ def balanced_packing(weight: np.ndarray,
pack_items = [0] * num_packs
for group in indices[i]:
pack = min(
(i
for i in range(num_packs) if pack_items[i] < groups_per_pack),
key=pack_weights.__getitem__)
(i for i in range(num_packs) if pack_items[i] < groups_per_pack),
key=pack_weights.__getitem__,
)
assert pack_items[pack] < groups_per_pack
pack_index[i, group] = pack
rank_in_pack[i, group] = pack_items[pack]
@@ -53,9 +50,7 @@ def balanced_packing(weight: np.ndarray,
return pack_index, rank_in_pack
def replicate_experts(
weight: np.ndarray,
num_phy: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
def replicate_experts(weight: np.ndarray, num_phy: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Replicate `num_log` experts to `num_phy` replicas, such that the maximum load of all replicas is minimized.
@@ -71,8 +66,7 @@ def replicate_experts(
n, num_log = weight.shape
num_redundant = num_phy - num_log
assert num_redundant >= 0
phy2log = np.arange(num_phy, dtype=np.int32).reshape(1, -1).repeat(n,
axis=0)
phy2log = np.arange(num_phy, dtype=np.int32).reshape(1, -1).repeat(n, axis=0)
rank = np.zeros((n, num_phy), dtype=np.int32)
logcnt = np.ones((n, num_log), dtype=np.int32)
arangen = np.arange(n, dtype=np.int32)
@@ -85,9 +79,12 @@ def replicate_experts(
def rebalance_experts_hierarchical(
weight: np.ndarray, num_physical_experts: int, num_groups: int,
num_nodes: int,
num_gpus: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
weight: np.ndarray,
num_physical_experts: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Parameters:
weight: [num_moe_layers, num_logical_experts]
@@ -112,56 +109,51 @@ def rebalance_experts_hierarchical(
def inverse(perm: np.ndarray) -> np.ndarray:
inv = np.empty_like(perm)
inv[np.arange(perm.shape[0])[:, None],
perm] = np.arange(perm.shape[1], dtype=np.int32).reshape(1, -1)
inv[np.arange(perm.shape[0])[:, None], perm] = np.arange(perm.shape[1], dtype=np.int32).reshape(1, -1)
return inv
# Step 1: pack groups to nodes
tokens_per_group = weight.reshape(num_layers, num_groups,
group_size).sum(axis=-1)
group_pack_index, group_rank_in_pack = balanced_packing(
tokens_per_group, num_nodes)
log2mlog = (((group_pack_index * groups_per_node + group_rank_in_pack) *
group_size)[:, :, None] +
np.arange(group_size, dtype=np.int32)).reshape(num_layers, -1)
tokens_per_group = weight.reshape(num_layers, num_groups, group_size).sum(axis=-1)
group_pack_index, group_rank_in_pack = balanced_packing(tokens_per_group, num_nodes)
log2mlog = (
((group_pack_index * groups_per_node + group_rank_in_pack) * group_size)[:, :, None]
+ np.arange(group_size, dtype=np.int32)
).reshape(num_layers, -1)
mlog2log = inverse(log2mlog)
# Step 2: construct redundant experts within nodes
tokens_per_mlog = np.take_along_axis(weight, mlog2log, axis=-1).reshape(
-1, num_logical_experts // num_nodes)
phy2mlog, phyrank, mlogcnt = replicate_experts(
tokens_per_mlog, num_physical_experts // num_nodes)
tokens_per_mlog = np.take_along_axis(weight, mlog2log, axis=-1).reshape(-1, num_logical_experts // num_nodes)
phy2mlog, phyrank, mlogcnt = replicate_experts(tokens_per_mlog, num_physical_experts // num_nodes)
# Step 3: pack physical_experts to GPUs
tokens_per_phy = np.take_along_axis(tokens_per_mlog / mlogcnt,
phy2mlog,
axis=-1)
pack_index, rank_in_pack = balanced_packing(tokens_per_phy,
num_gpus // num_nodes)
tokens_per_phy = np.take_along_axis(tokens_per_mlog / mlogcnt, phy2mlog, axis=-1)
pack_index, rank_in_pack = balanced_packing(tokens_per_phy, num_gpus // num_nodes)
phy2pphy = pack_index * phy_experts_per_gpu + rank_in_pack
pphy2phy = inverse(phy2pphy)
pphy2mlog = np.take_along_axis(
phy2mlog, pphy2phy,
axis=-1) # [num_layers * num_nodes, num_log_per_nodes]
pphy2mlog = (pphy2mlog.reshape(num_layers, num_nodes, -1) +
np.arange(0,
num_logical_experts,
num_logical_experts // num_nodes,
dtype=np.int32).reshape(1, -1, 1)).reshape(
num_layers, -1)
pphy2mlog = np.take_along_axis(phy2mlog, pphy2phy, axis=-1) # [num_layers * num_nodes, num_log_per_nodes]
pphy2mlog = (
pphy2mlog.reshape(num_layers, num_nodes, -1)
+ np.arange(
0,
num_logical_experts,
num_logical_experts // num_nodes,
dtype=np.int32,
).reshape(1, -1, 1)
).reshape(num_layers, -1)
pphy2log = np.take_along_axis(mlog2log, pphy2mlog, axis=-1)
pphyrank = np.take_along_axis(phyrank, pphy2phy,
axis=-1).reshape(num_layers, -1)
logcnt = np.take_along_axis(mlogcnt.reshape(num_layers, -1),
log2mlog,
axis=-1)
pphyrank = np.take_along_axis(phyrank, pphy2phy, axis=-1).reshape(num_layers, -1)
logcnt = np.take_along_axis(mlogcnt.reshape(num_layers, -1), log2mlog, axis=-1)
return pphy2log, pphyrank, logcnt
def rebalance_experts(
weight: np.ndarray, num_replicas: int, num_groups: int, num_nodes: int,
num_gpus: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
weight: np.ndarray,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Entry point for expert-parallelism load balancer.
@@ -182,23 +174,23 @@ def rebalance_experts(
if num_groups % num_nodes == 0:
# use hierarchical load-balance policy
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(
weight, num_replicas, num_groups, num_nodes, num_gpus)
weight, num_replicas, num_groups, num_nodes, num_gpus
)
else:
# use global load-balance policy
phy2log, phyrank, logcnt = replicate_experts(weight, num_replicas)
maxlogcnt = logcnt.max()
log2phy = np.full((num_layers, num_logical_experts, maxlogcnt),
-1,
dtype=np.int32)
np.put_along_axis(log2phy.reshape(num_layers, -1)[:, :, None],
(phy2log * maxlogcnt + phyrank)[:, :, None],
np.arange(num_replicas, dtype=np.int32).reshape(
1, -1).repeat(num_layers, axis=0)[:, :, None],
axis=1)
log2phy = np.full((num_layers, num_logical_experts, maxlogcnt), -1, dtype=np.int32)
np.put_along_axis(
log2phy.reshape(num_layers, -1)[:, :, None],
(phy2log * maxlogcnt + phyrank)[:, :, None],
np.arange(num_replicas, dtype=np.int32).reshape(1, -1).repeat(num_layers, axis=0)[:, :, None],
axis=1,
)
return phy2log, log2phy, logcnt
__all__ = ['rebalance_experts']
__all__ = ["rebalance_experts"]
def main():
@@ -211,17 +203,20 @@ def main():
num_nodes = 4
num_gpus = 4 * 8
model_tokens_per_expert_stats_list = np.random.randint(
low=1, high=10, size=(num_hidden_layers, num_expert))
model_tokens_per_expert_stats_list = np.random.randint(low=1, high=10, size=(num_hidden_layers, num_expert))
phy2log, phyrank, logcnt = rebalance_experts(
model_tokens_per_expert_stats_list, num_replicas, num_groups,
num_nodes, num_gpus)
model_tokens_per_expert_stats_list,
num_replicas,
num_groups,
num_nodes,
num_gpus,
)
print(phy2log)
print(phyrank)
print(logcnt)
if __name__ == '__main__':
if __name__ == "__main__":
main()