mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import time
|
||||
|
||||
import paddle
|
||||
@@ -58,30 +59,28 @@ class DcuWorker(GpuWorker):
|
||||
start_time = time.perf_counter()
|
||||
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
|
||||
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
|
||||
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank) # not reserved
|
||||
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
|
||||
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank) # not reserved
|
||||
|
||||
total_gpu_memory = paddle.device.cuda.get_device_properties(self.local_rank).total_memory
|
||||
before_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
|
||||
|
||||
|
||||
logger.info((
|
||||
"Before running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {before_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}"))
|
||||
logger.info(
|
||||
(
|
||||
"Before running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {before_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}",
|
||||
)
|
||||
)
|
||||
|
||||
# 2. Profile run
|
||||
self.model_runner.profile_run()
|
||||
|
||||
# 3. Statistical memory information
|
||||
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(
|
||||
self.local_rank)
|
||||
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(
|
||||
self.local_rank)
|
||||
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
|
||||
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank)
|
||||
|
||||
after_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
|
||||
|
||||
@@ -89,18 +88,24 @@ class DcuWorker(GpuWorker):
|
||||
model_block_memory_used = self.cal_theortical_kvcache()
|
||||
paddle.device.cuda.empty_cache()
|
||||
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
|
||||
available_kv_cache_memory = total_gpu_memory * \
|
||||
self.parallel_config.gpu_memory_utilization - after_used_gpu_memory - paddle_peak_increase
|
||||
available_kv_cache_memory = (
|
||||
total_gpu_memory * self.parallel_config.gpu_memory_utilization
|
||||
- after_used_gpu_memory
|
||||
- paddle_peak_increase
|
||||
)
|
||||
available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
|
||||
|
||||
end_time = time.perf_counter()
|
||||
logger.info(
|
||||
("After running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {after_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
|
||||
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
|
||||
f"Profile time: {end_time - start_time}"))
|
||||
(
|
||||
"After running the profile, the memory usage info is as follows:",
|
||||
f"\nDevice Total memory: {total_gpu_memory / Gb}",
|
||||
f"\nDevice used memory: {after_used_gpu_memory / Gb}",
|
||||
f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
|
||||
f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
|
||||
f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
|
||||
f"Profile time: {end_time - start_time}",
|
||||
)
|
||||
)
|
||||
|
||||
return available_kv_cache_memory # return to caculate the block num in this device
|
||||
|
||||
Reference in New Issue
Block a user