mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -18,19 +18,32 @@ from typing import Dict
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.model_loader import ModelRegistry
|
||||
from fastdeploy.model_executor.models.ernie4_5_moe import \
|
||||
Ernie4_5_MoeForCausalLM, Ernie4_5_PretrainedModel
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import \
|
||||
Ernie4_5_VLMoeForConditionalGeneration, Ernie4_5_VLPretrainedModel
|
||||
from fastdeploy.model_executor.models.qwen2 import Qwen2ForCausalLM, Qwen2PretrainedModel
|
||||
from fastdeploy.model_executor.models.qwen3 import Qwen3ForCausalLM, Qwen3PretrainedModel
|
||||
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoeForCausalLM, Qwen3MoePretrainedModel
|
||||
from fastdeploy.model_executor.models.ernie4_5_moe import (
|
||||
Ernie4_5_MoeForCausalLM,
|
||||
Ernie4_5_PretrainedModel,
|
||||
)
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import (
|
||||
Ernie4_5_VLMoeForConditionalGeneration,
|
||||
Ernie4_5_VLPretrainedModel,
|
||||
)
|
||||
from fastdeploy.model_executor.models.qwen2 import (
|
||||
Qwen2ForCausalLM,
|
||||
Qwen2PretrainedModel,
|
||||
)
|
||||
from fastdeploy.model_executor.models.qwen3 import (
|
||||
Qwen3ForCausalLM,
|
||||
Qwen3PretrainedModel,
|
||||
)
|
||||
from fastdeploy.model_executor.models.qwen3moe import (
|
||||
Qwen3MoeForCausalLM,
|
||||
Qwen3MoePretrainedModel,
|
||||
)
|
||||
from fastdeploy.rl.rollout_config import RolloutModelConfig
|
||||
|
||||
|
||||
class RolloutModel(nn.Layer):
|
||||
"""Main model class for rollout operations, supports multimodal components for train."""
|
||||
|
||||
@@ -53,7 +66,7 @@ class RolloutModel(nn.Layer):
|
||||
def get_name_mappings_to_training(self) -> Dict[str, str]:
|
||||
"""Get parameter name mappings between rollout and training models."""
|
||||
return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})()
|
||||
|
||||
|
||||
def get_quantization_infer_keys(self) -> Dict[str, str]:
|
||||
"""Get parameter name mappings between rollout and training models."""
|
||||
return getattr(self.rollout_model, "get_quantization_infer_keys", lambda: {})()
|
||||
@@ -66,7 +79,10 @@ class RolloutModel(nn.Layer):
|
||||
|
||||
class BaseRLModel(nn.Layer):
|
||||
"""Base class for RL models with common functionality"""
|
||||
def __init__(self,):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
):
|
||||
super(BaseRLModel, self).__init__()
|
||||
self.infer_to_train_mapping = {}
|
||||
self.fd_config = None
|
||||
@@ -74,15 +90,15 @@ class BaseRLModel(nn.Layer):
|
||||
@classmethod
|
||||
def name(cls) -> str:
|
||||
return cls.__name__
|
||||
|
||||
|
||||
def _update_base_mappings(self, base_name: str) -> None:
|
||||
"""Common static mappings"""
|
||||
static_mappings = {
|
||||
f"{base_name}.embed_tokens.embeddings.weight": f"{base_name}.embed_tokens.weight",
|
||||
"lm_head.linear.weight": "lm_head.weight"
|
||||
"lm_head.linear.weight": "lm_head.weight",
|
||||
}
|
||||
self.infer_to_train_mapping.update(static_mappings)
|
||||
|
||||
|
||||
def _complete_missing_mappings(self) -> None:
|
||||
"""
|
||||
Complete the mapping dictionary with keys that have identical names in inference and training.
|
||||
@@ -94,12 +110,12 @@ class BaseRLModel(nn.Layer):
|
||||
|
||||
if getattr(self.fd_config.model_config, "tie_word_embeddings", False):
|
||||
self.infer_to_train_mapping.pop("lm_head.linear.weight")
|
||||
|
||||
|
||||
def get_quantization_infer_keys(self) -> list[str]:
|
||||
"""Get quantization infer keys"""
|
||||
quant_weight_key = []
|
||||
if self.fd_config.quant_config.name() == "wint8":
|
||||
""" RL only support weight_only_int8 now"""
|
||||
"""RL only support weight_only_int8 now"""
|
||||
for key in self.state_dict().keys():
|
||||
if "scale" in key:
|
||||
quant_weight_key.append(key.replace(".weight_scale", ".weight"))
|
||||
@@ -107,10 +123,12 @@ class BaseRLModel(nn.Layer):
|
||||
raise ValueError("Only 'wint8' quantization is supported in RL roullout.")
|
||||
return quant_weight_key
|
||||
|
||||
|
||||
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
|
||||
"""
|
||||
Ernie4_5_MoeForCausalLMRL
|
||||
"""
|
||||
|
||||
_get_tensor_parallel_mappings = Ernie4_5_PretrainedModel._get_tensor_parallel_mappings
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
@@ -134,15 +152,18 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
|
||||
self._update_base_mappings("ernie")
|
||||
|
||||
base_name = "ernie.layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx: int):
|
||||
# MoE specific mappings
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"
|
||||
] = f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"
|
||||
] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
|
||||
@@ -165,8 +186,10 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
|
||||
|
||||
assert isinstance(self.fd_config.model_config.moe_layer_start_index, int)
|
||||
# Process MoE layers
|
||||
for layer_idx in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
for layer_idx in range(
|
||||
self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers,
|
||||
):
|
||||
_add_layer_mappings(layer_idx)
|
||||
|
||||
self._complete_missing_mappings()
|
||||
@@ -178,6 +201,7 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
|
||||
"""
|
||||
Ernie4_5_VLMoeForConditionalGenerationRL
|
||||
"""
|
||||
|
||||
_get_tensor_parallel_mappings = Ernie4_5_VLPretrainedModel._get_tensor_parallel_mappings
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
@@ -206,25 +230,30 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
|
||||
def _add_expert_mappings(layer_idx: int, moe_tag: str, expert_start: int):
|
||||
# MoE specific mappings
|
||||
gate_suffix = "" if moe_tag == "text" else "_1"
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"
|
||||
] = f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
|
||||
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"
|
||||
] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# Initialize defaultdict for expert weights
|
||||
from collections import defaultdict
|
||||
from itertools import chain
|
||||
|
||||
|
||||
def _generate_ranges(start, end, step=16, take=8):
|
||||
"""生成 [start, start+take), [start+step, start+step+take), ... 直到 end"""
|
||||
return chain(
|
||||
*(range(i, min(i + take, end)) # 防止越界
|
||||
for i in range(start, end, step)))
|
||||
|
||||
return chain(*(range(i, min(i + take, end)) for i in range(start, end, step))) # 防止越界
|
||||
|
||||
expert_mappings = defaultdict(list)
|
||||
for expert_idx in _generate_ranges(expert_start, total_moe_num, expert_num_per_rank * 2, expert_num_per_rank):
|
||||
for expert_idx in _generate_ranges(
|
||||
expert_start,
|
||||
total_moe_num,
|
||||
expert_num_per_rank * 2,
|
||||
expert_num_per_rank,
|
||||
):
|
||||
for ph in place_holders:
|
||||
expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
@@ -273,6 +302,7 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM, BaseRLModel):
|
||||
"""
|
||||
Qwen2ForCausalLMRL
|
||||
"""
|
||||
|
||||
_get_tensor_parallel_mappings = Qwen2PretrainedModel._get_tensor_parallel_mappings
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
@@ -295,15 +325,16 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM, BaseRLModel):
|
||||
# Initialize mapping dictionary
|
||||
self._update_base_mappings("qwen2")
|
||||
base_name = "qwen2.layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx):
|
||||
# FFN mappings
|
||||
for ph in place_holders:
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"
|
||||
] = f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
|
||||
|
||||
for layer_idx in range(
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx)
|
||||
|
||||
self._complete_missing_mappings()
|
||||
@@ -315,6 +346,7 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
|
||||
"""
|
||||
Qwen3MoeForCausalLMRL
|
||||
"""
|
||||
|
||||
_get_tensor_parallel_mappings = Qwen3MoePretrainedModel._get_tensor_parallel_mappings
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
@@ -343,12 +375,14 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx: int):
|
||||
# MoE specific mappings
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_weight"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.gate_weight"
|
||||
] = f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
if self.fd_config.moe_config.moe_use_aux_free:
|
||||
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
self.infer_to_train_mapping[
|
||||
f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"
|
||||
] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.moe_config.num_experts):
|
||||
@@ -382,6 +416,7 @@ class Qwen3ForCausalLMRL(Qwen3ForCausalLM, BaseRLModel):
|
||||
"""
|
||||
Qwen3ForCausalLMRL
|
||||
"""
|
||||
|
||||
_get_tensor_parallel_mappings = Qwen3PretrainedModel._get_tensor_parallel_mappings
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
@@ -395,6 +430,6 @@ class Qwen3ForCausalLMRL(Qwen3ForCausalLM, BaseRLModel):
|
||||
def name(self) -> str:
|
||||
"""name"""
|
||||
return "Qwen3ForCausalLMRL"
|
||||
|
||||
|
||||
def get_name_mappings_to_training(self) -> Dict[str, str]:
|
||||
pass
|
||||
|
Reference in New Issue
Block a user